Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoe..>>
Bài này mk gặp rồi nhờ cô giải hộ mà giờ mk quên mất tiêu rồi
Xin lỗi bn nha, mk k thể giúp đc rồi!
hxbdsajfvgfchgcvetrfgeffbaw4bcdxrfbwebctfdefvewbdrgbwdgberhgcvergcdfbrbcftvvtgcbeftbckberfdkjuebfcbtuvrvbtkbr
S = \(...\)
=> \(S.2^2=1-\frac{1}{2^2}+\frac{1}{2^4}-...+\frac{1}{2^{2000}}-\frac{1}{2^{2002}}\)
=> \(S.4+S=\left(1-\frac{1}{2^2}+\frac{1}{2^4}-...-\frac{1}{2^{2002}}\right)+\left(\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...-\frac{1}{2^{2004}}\right)\)
=> \(5S=1-\frac{1}{2^{2004}}<1\)
=> \(S<1:5=0,2\left(đpcm\right)\)
Vậy S < 0,2.
\(S=\dfrac{1}{2^2}-\dfrac{1}{2^4}+...+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\)
\(2^2S=2^2\left(\dfrac{1}{2^2}-\dfrac{1}{2^4}+...+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\right)\)
\(4S=1-\dfrac{1}{2^2}+...+\dfrac{1}{2^{4n}}+\dfrac{1}{2^{4n+2}}+...+\dfrac{1}{2^{2000}}-\dfrac{1}{2^{2002}}\)
\(4S+S=\left(1-\dfrac{1}{2^2}+...+\dfrac{1}{2^{2000}}-\dfrac{1}{2^{2002}}\right)+\left(\dfrac{1}{2^2}-\dfrac{1}{2^4}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\right)\)
\(5S=1-\dfrac{1}{2^{2004}}< 1\Rightarrow S< \dfrac{1}{5}=0,2\)
4S=\(\dfrac{4}{2^2}-\dfrac{4}{2^4}+\dfrac{4}{2^6}-...+\dfrac{4}{2^{4n-2}}-\dfrac{4}{2^{4n}}+...+\dfrac{4}{2^{2002}}-\dfrac{4}{2^{2004}}\)
4S=1-\(\dfrac{1}{2^2}+\dfrac{1}{2^4}-,...-\dfrac{1}{2^{2002}}\)
4S+S=1-\(\dfrac{1}{2^{2004}}\)
5S=\(\dfrac{2^{2004}-1}{2^{2004}}\)<1
\(\Rightarrow\)5S<1 hay S<\(\dfrac{1}{5}\)=0,2(đpcm)
cm j bạn