Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2^2+2^3+...+2^{2022}\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{2023}\)
\(\Rightarrow A=2A-A=2+2^3+...+2^{2023}-1-2^2-...-2^{2022}=2-1+2^{2023}-2^2=-3+2^{2023}\)
A = 1 + 22 + 23 + ..... + 22021 + 22022
2A = 2(1 + 22 + 23 + ..... + 22021 + 22022)
2A = 2 + 23 + 24 + ..... + 22022 + 22023
2A - A = (2+23 + 24 + ..... + 22022 + 22023) - (1 + 22 + 23 + .... + 22021 + 22022 )
Thấy sai sai sao í -))
S=1+2+22+23+...+220
2S=2+22+23+24+...+221
=>S=2S-S=221-1C
Vậy S=221-1
Đặt A = 20 + 21 + 22 + 23 + ... + 210
Ta có : 2A = 21 + 22 + 23 + ... + 211
2A - A = (21 + 22 + 23 + ... + 211) - (20 + 21 + 22 + 23 + ... + 210)
A = 211 - 20 = 2048 - 1 = 2047
20 + 21 + 22 + 23 + ....... + 210
= 1 + 21 + 22 + 23 + ........... + 210
Ta biết từ 1 đến 10 có tổng là 55
=> 1 + 255
\(S=2^{2019}-2^{2018}-2^{2017}-...-2^2-2-1\)
\(=2^{2019}-\left(1+2+2^2+...+2^{2017}+2^{2018}\right)\) (1)
Đặt \(Q=1+2+2^2+...+2^{2017}+2^{2018}\)
\(2Q=2+2^2+2^3+...+2^{2018}+2^{2019}\)
\(2Q-Q=2^{2019}-1\)
\(Q=2^{2019}-1\)(2)
Từ (1) và (2), ta được:
\(S=2^{2019}-\left(2^{2019}-1\right)=1\)
S*2=1+1/2+1/2mũ2+1/2mũ3+...+1/2mũ19
S*2-S=1-1/2mũ20
S=1-1/2mũ20<1
Vậy bài toán được chứng minh
cảm ơn bạn nhìu