Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số hạng của dãy S là :(2004-1):1+1=2004
Ta chia 2004 số hạng thành 501 nhóm mỗi nhóm 4 số và đătj thừa số chung như sau:
(5+5^2+5^3+5^4)+........+(5^2001+5^2002+5^2003+5^2004)
=> (5+5^2+5^3+5^4)+........+5^2001*(5+5^2+5^3+5^4)
=>780+..........+5^2001*780
=780*(1+.........+5^2001)
Vì 780 chia hết cho 65
vậy S chia hết cho 65
\(S=\left(5+5^3\right)+5\left(5+5^3\right)+............+5^{2001}\left(5+5^3\right)\)
\(\Rightarrow S=130+5.130+....+5^{2001}.130\)
\(\Rightarrow S=65\left(2+2.5+.....+2.5^{2001}\right)\)
=>s chia hết cho 65
Vậy S chia hết cho 65
S = 5 + 5^2 + 5^3 + 5^4 + 5^5 + 5^6+.....5^2004
S= ( 5 + 5^4) + ( 5^2 + 5^5) + (5^3 + 5^6) + ... + ( 5^200 + 5^2004)
S=5 x 126 + 5^2 x 126 + 5^3 x 126 + ... + 5^2000 x 126
---->S chia hết cho 126
S= 5 + 5^2 + 5^3 + 5^4 + 5^5 + 5^6 +....+ 5^2004
Có 65 = 13 x 5 mà tổng S chia hết cho 5 nên chứng minh S chia hết cho 13
Tổng S có 2004 số số hạng được tách thành 2 phần : S = S1 + S2
Với S1 = 5 + 5^3 = 130 = 65 x 2 nên S1 chia hết cho 65
S2 = 5^2 + 5^4 + 5^5 +...+ 5^ 2004 (có 2002 số hạng) mà 2002 chia hết cho 13 nên S2 chia hết cho 65
Vậy S chia hết cho 65
S=5+5^2+5^3+...+5^2004
S=(5+5^2+5^3+5^4)+(5^6+5^7+5^8+5^9)+...+(+5^2001+5^2002+5^2003+5^2004)
S=1(5+5^2+5^3+5^4)+5^5(5+5^2+5^3+5^4)+...+5^2000(5+5^2+5^3+5^4)
S=1*780+5^5*780+...+5^2000*780
S=780(1+5^5+..+5^2000)
vì 780 chia hết cho 65 nên S chia hết cho 65
k mik nha
S=5+5^2+5^3+5^4+5^5+5^6+...+5^2004
=(5+5^2+5^3+5^4)+(5^5+5^6+5^7+5^8)+...+(5^2001+5^2002+5^2003+5^2004)
=780+5^4(5+5^2+5^3+5^4)+...+5^2000(5+5^2+5^3+5^4)
=780(1+5^4+...+5^2000) chia hết cho 65
S=5+5^2+5^3+5^4+5^5+5^6+...+5^2004
=(5+5^2+5^3+5^4+5^5+5^6)+...+(5^1999+5^2000+5^2001+5^2002+5^2003+5^2004)
=19530+...+5^1998(5+5^2+5^3+5^4+5^5+5^6)
=19530(1+...+5^1998) chia hết cho 126
Ta có: S=5+5^2+...+5^2004
=>S=(5+5^2+5^3+5^4)+...+(5^2001+5^2002+5^2003+5^2004)
=>S=(5+5^2+5^3+5^4)+...+5^2000.(5+5^2+5^3+5^4)
=>S=780+...+5^2000.780
=>S=(1+...+5^2000).780
=>S=(1+...+5^2000).12.65 chia hết cho 65
=>S chia hết cho 65
=>ĐPCM