\(x^2-4x-m^2-3=0\) luôn có hai nghiệm phân biệt với mọi giá trị của m
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{Δ}=\left(-4\right)^2-4\cdot1\cdot\left(-m^2-3\right)=16+4m^2+12=4m^2+28>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

2 tháng 9 2018

bố méo biết làm. Hỏi cái cc

2 tháng 9 2018

a) \(2x^2-4x+m=0\)

     \(2\left(x^2-2x\right)=-m\)

     \(x^2-2x+1=-\frac{m}{2}+1\)

    \(\left(x-1\right)^2=-\left(\frac{m}{2}-1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x-1=\sqrt{-\left(\frac{m}{2}-1\right)}\\x-1=-\sqrt{-\left(\frac{m}{2}-1\right)}\end{cases}}\) 

để căn có nghĩa thì \(-\left(\frac{m}{2}-1\right)\ge0\Leftrightarrow=\frac{m}{2}-1\le0\Leftrightarrow m\le2\)

vậy pt luôn có 2 nghiệm phân biệt với điều kiện m <= 2

b)

\(mx^2-4x-5=0\)

\(x^2-\frac{4}{m}x-\frac{5}{m}=0\)

\(\left(x^2-2x.\frac{2}{m}+\frac{4}{m^2}\right)=\frac{4}{m^2}+\frac{5}{m}\)

\(\left(x-\frac{2}{m}\right)^2=\frac{4+5m}{m^2}\)

\(\Leftrightarrow\hept{\begin{cases}x-\frac{2}{m}=\sqrt{\frac{4+5m}{m^2}}\\x-\frac{2}{m}=-\sqrt{\frac{4+5m}{m^2}}\end{cases}}\)

để căn có nghĩa thì

\(\sqrt{\frac{4+5m}{m^2}}\ge0\Leftrightarrow4+5m\ge0\Leftrightarrow m\ge-\frac{4}{5}\)

vậy pt có 2 nghiệm với dk m .= -4/5

21 tháng 8 2016

1. Thay m = 2 vào phương trình (1) ta có.

            2x2 + 3x + 1 = 0 

Có ( a - b + c = 2 - 3 + 1 = 0)

=> Phương trình (1) có nghiệm x1 = -1 ; x2  = - 1/2

2. Phương trình (1) có   = (2m -1)2 - 8(m -1)

                                         = 4m2 - 12m + 9 = (2m - 3)2 \(\ge\) 0 với mọi m.

=> Phương trình (1) luôn có hai nghiệm x1; x2 với mọi giá trị của m.

+ Theo hệ thức Vi ét ta có 

\(\begin{cases}x_1+x_2=\frac{1-2m}{2}\\x_1x_2=\frac{m-1}{2}\end{cases}\) 

+ Theo điều kiện đề bài: 4x12  + 4x22  + 2x1x2 = 1

                           <=>  4(x1 + x2)2 - 6 x1x2 = 1     

                          <=>  ( 1 - 2m)2 - 3m + 3 = 1

                          <=>  4m2  - 7m + 3 = 0  

+ Có a + b + c = 0 => m1 = 1; m2 = 3/4 

Vậy với m = 1 hoặc m = 3/4 thì phương trình (1) có hai nghiệm x1; x2 thoả mãn:

4x12  + 4x22  + 2x1x2 = 1 

 

21 tháng 8 2016

hơi dư nhỉ?? để làm lại há

GV
1 tháng 5 2017

a) Khi \(m=-4\) phương trình trở thành:

\(\left[\left(-4\right)^2+5.\left(-4\right)+4\right]x^2=-4+4\)

\(\Leftrightarrow0.x^2=0\)

Đúng với mọi x.

b) Khi \(m=-1\) phương trình trở thành:

\(\left[\left(-1\right)^2+5.\left(-1\right)+4\right]x^2=-1+4\)

\(\Leftrightarrow0.x^2=3\)

Phương trình vô nghiệm.

c) Khi \(m=-2\) phương trình trở thành:

\(\left[\left(-2\right)^2+5.\left(-2\right)+4\right]x^2=-2+4\)

\(\Leftrightarrow-2.x^2=2\)

\(\Leftrightarrow x^2=-1\)

Phương trình này cũng vô nghiệm.

Khi \(m=-3\) phương trình trở thành:

\(\left[\left(-3\right)^2+5.\left(-3\right)+4\right]x^2=-3+4\)

\(\Leftrightarrow-2x^2=1\)

\(\Leftrightarrow x^2=-\dfrac{1}{2}\)

Phương trình cũng vô nghiệm.

d) Khi \(m=0\) phương trình trở thành:

\(\left[0^2+5.0+4\right]x^2=0+4\)

\(\Leftrightarrow4x^2=4\)

\(\Leftrightarrow x^2=1\)

Phương trình có hai nghiệm là \(x=1,x=-1\).

19 tháng 6 2018

a) Đặt  \(A=x^2+4x+7\)

\(A=\left(x^2+4x+4\right)+3\)

\(A=\left(x+2\right)^2+3\)

Mà  \(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow A\ge3>0\)

b) Đặt  \(B=4x^2-4x+5\)

\(B=\left(4x^2-4x+1\right)+4\)

\(B=\left(2x-1\right)^2+4\)

Mà  \(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow B\ge4>0\)

c) Đặt  \(C=x^2+2y^2+2xy-2y+3\)

\(C=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)+2\)

\(C=\left(x+y\right)^2+\left(y-1\right)^2+2\)

Mà  \(\left(x+y\right)^2\ge0\forall x;y\)

      \(\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow C\ge2>0\)

21 tháng 2 2020

a)Thay m=-1 vào phương trình ta đc:

\(4.\left(-1\right)^2.x-4x-3.\left(-1\right)=3\)

\(\Leftrightarrow4x-4x+3=3\)

\(\Leftrightarrow0x=0\)(Luôn đúng)

\(\Leftrightarrow\)Pt có vô số nghiệm

Vậy pt có vô số nghiệm.

b)Thay x=2 vào phương trình ta  có:

\(4m^2.2-4.2-3m=3\)

\(\Leftrightarrow8m^2-8-3m=3\)

\(\Leftrightarrow8m^2-3m-11=0\)

\(\Leftrightarrow8m^2+8m-11m-11=0\)

\(\Leftrightarrow8m\left(m+1\right)-11\left(m+1\right)=0\)

\(\Leftrightarrow\left(m+1\right)\left(8m-11\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m+1=0\\8m-11=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}m=-1\\m=\frac{11}{8}\end{cases}}\)

Vậy tập nghiệm của pt là S={-1;\(\frac{11}{8}\)}

c)Ta có:

\(5x-\left(3x-2\right)=6\)

\(\Leftrightarrow5x-3x+2=6\)

\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\)

Có x=2 là nghiệm của pt \(5x-\left(3x-2\right)=6\)

Để \(4m^2x-4x-3m=3\Leftrightarrow5x-\left(3x-2\right)=6\)

\(\Leftrightarrow\)x=2 là nghiệm của \(4m^2x-4x-3m=3\)

Thay x=2 vào pt trên ta đc:

\(4m^2.2-4.2-3m=3\)(Giống câu b)

Vậy m=-1,m=11/8...

d)Có:\(4m^2x-4x-3m=3\)

\(\Leftrightarrow4x\left(m^2-1\right)=3+3m\)

Để pt vô nghiệm

\(\Leftrightarrow\hept{\begin{cases}m^2-1=0\\3+3m\ne0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=\pm1\\m\ne-1\end{cases}}\)

\(\Leftrightarrow m=1\)

Vậy m=1 thì pt vô nghiệm.