Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Max nhiều =((
a) (Giải cụ thể hơn xíu nè!)
a = 1; b = -10; c = -m + 20
\(\Delta=b^2-4ac\)
\(=\left(-10\right)^2-4.1.\left(-m+20\right)\)
\(=100+4m-80\)
\(=20+4m\)
Để pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow20+4m>0\Leftrightarrow m>-5\)
b/ Theo Vi-et ta có: \(P=x_1x_2=\frac{c}{a}=-m+20\)
Để pt có 2 nghiệm trái dấu \(\Leftrightarrow P< 0\Leftrightarrow-m+20< 0\Leftrightarrow m>20\)
c/ Theo Vi-et ta có: \(S=x_1+x_2=-\frac{b}{a}=10\)
\(P=-m+20\)
Để pt có 2 nghiệm dương \(\Leftrightarrow\hept{\begin{cases}\Delta\ge0\\P>0\\S>0\end{cases}}\Leftrightarrow\hept{\begin{cases}P>0\\S>0\end{cases}\Leftrightarrow\hept{\begin{cases}-m+20>0\\10>0\left(hiennhien\right)\end{cases}\Leftrightarrow}-m< 20}\)
a) Phương trình 4x2 + 2x – 5 = 0 có nghiệm vì a = 4, c = -5 trái dấu nhau nên
x1 + x2 = \(-\dfrac{1}{2}\), x1x2 = \(-\dfrac{5}{4}\)
b) Phương trình 9x2 – 12x + 4 = 0 có ∆' = 36 - 36 = 0
x1 + x2 = \(\dfrac{12}{9}\) = \(\dfrac{4}{3}\), x1x2 = \(\dfrac{4}{9}\)
c) Phương trình 5x2+ x + 2 = 0 có ∆ = 12 - 4 . 5 . 2 = -39 < 0
Phương trình vô nghiệm, nên không tính được tổng và tích các nghiệm.
d) Phương trình 159x2 – 2x – 1 = 0 có hai nghiệm phân biệt vì a và c trái dấu
x1 + x2 = \(\dfrac{2}{159}\), x1x2 = \(-\dfrac{1}{159}\)
a) Phương trình 4x2 + 2x – 5 = 0 có nghiệm vì a = 4, c = -5 trái dấu nhau nên
x1 + x2 = , x1x2 =
b) Phương trình 9x2 – 12x + 4 = 0 có ∆' = 36 - 36 = 0
x1 + x2 = = , x1x2 =
c) Phương trình 5x2+ x + 2 = 0 có ∆ = 12 - 4 . 5 . 2 = -39 < 0
Phương trình vô nghiệm, nên không tính được tổng và tích các nghiệm.
d) Phương trình 159x2 – 2x – 1 = 0 có hai nghiệm phân biệt vì a và c trái dấu
x1 + x2 = , x1x2 =
a. \(x^4-10x^3+25x^2-36=0\)
=> \(x^3\left(x-3\right)-7x^2\left(x-3\right)+4x\left(x-3\right)+12\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(x^3-7x^2+4x+12\right)=0\)
=>\(\left(x-3\right)\left[x^2\left(x-2\right)-5x\left(x-2\right)-6\left(x-2\right)\right]=0\)=> \(\left(x-3\right)\left(x-2\right)\left(x^2-5x-6\right)=0\)
=> \(\left(x-3\right)\left(x-2\right)\left(x+1\right)\left(x-6\right)=0\)
=>\(\left[\begin{matrix}x=3\\x=2\\x=-1\\x=6\end{matrix}\right.\)
b) \(x^4\) - \(^{9x^2}\) - 24x - 16 = 0
=> \(x^3\left(x-4\right)+4x^2\left(x-4\right)+7x\left(x-4\right)+4\left(x-4\right)=0\)=>\(\left(x-4\right)\left(x^3+4x^2+7x+4\right)=0\)
=> \(\left(x-4\right)\left[x^2\left(x+1\right)+3x\left(x+1\right)+4\left(x+1\right)\right]=0\)=>\(\left(x-4\right)\left(x+1\right)\left(x^2+3x+4\right)=0\)
=> \(\left(x-4\right)\left(x+1\right)=0\) (vì x^2 + 3x + 4> 0)
=>\(\left[\begin{matrix}x=4\\x=-1\end{matrix}\right.\)
a,pt\(\Leftrightarrow\left(x^4-10x^3+25x\right)-36=0\)\(\Leftrightarrow\left(x^2-5x\right)^2-36=0\)
\(\Leftrightarrow\left(x^2-5x-6\right)\left(x^2-5x+6\right)=0\)\(\Leftrightarrow\left[\begin{matrix}x^2-5x-6=0\\x^2-5x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}\left(x+1\right)\left(x-6\right)=0\\\left(x-2\right)\left(x-3\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=-1,x=6\\x=2,x=3\end{matrix}\right.\)
vậy pt có 4 nghiệm x=(-1,6,2,3)
Theo đầu bài có \(x_1\)là nghiệm của phương trình \(ax^2+bx+c=0\)nên có
\(ax_1^2+bx_1+c=0\)
chia hai vế cho \(x_1^2\ne0\)ta được \(a+b\frac{1}{x_1}+c\frac{1}{x_1^2}=0\)
ta có \(c.\left(\frac{1}{x_1}\right)^2+b\left(\frac{1}{x_1}\right)+a=0\)
suy ra \(\frac{1}{x_1}\)là nghiệm của của phương trình \(cx^2+bx+a=0\)
Ta chọn \(x_2=\frac{1}{x_1}>0.\)vậy \(x_1x_2=1\)
áp dụng bất đẳng thức Co-si cho 2 hai số dương ta có :
\(x_1+x_2+x_1x_2=x_1+\frac{1}{x_1}+1\ge2\sqrt{x_1.\frac{1}{x_1}}+1=3\left(dpcm\right)\)
PT trùng phương mà giải dễ thôi đặt t=x2
đặt x2=t khi đó phương trình trở thành 9t2-10t+1=0
dùng Vi-Ét và ứng dụng tìm được nghiệm là 1 vầ 1/9
thay lại tìm x
đáp số: x=-1;x=-1/3;x=1/3;x=1