Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo bài làm :
Câu hỏi của êfe - Toán lớp 7 - Học toán với OnlineMath
\(b,n^2\left(n^4-1\right)\)
\(=n^2\left(n^2+1\right)\left(n^2-1\right)\)
Ta có:\(n^2-1;n^2;n^2+1\) là 3 số nghuyên liên tiếp
\(\Rightarrow n^2\left(n^2+1\right)\left(n^2-1\right)⋮60\)
\(\Rightarrowđpcm\)
=>
Bài chỉ chứng minh vế phải chia hết vế trái chứ k tìm n hay a nhé bạn
Nguyễn Ngọc Phương: Mình đâu có tìm $n,a$ đâu hả bạn? Mình đang chỉ ra TH sai mà???
Chả hạn, chứng minh $n(n+1)(n^2+1)\vdots 5$ thì có nghĩa mọi số tự nhiên/ nguyên $n$ đều phải thỏa mãn. Nhưng chỉ cần có 1 TH $n$ thay vào không đúng nghĩa là đề không đúng rồi.
\(\left(n+1\right)\left(n+2\right)...\left(2n\right)=\frac{\left(2n\right)!}{n!}=\frac{1.3.5...\left(2n-1\right).2.4.6...2n}{n!}\)
\(=\frac{1.3.5...\left(2n-1\right).\left(1.2\right)\left(2.2\right)\left(3.2\right)...\left(n.2\right)}{n!}=\frac{1.3.5...\left(2n-1\right).n!.2^n}{n!}\)
\(=1.3.5...\left(2n-1\right).2^n⋮2^n\)
xét (2a+3b)(2b+3a)=\(4ab+6b^2+9ab+6a^2=6\left(a^2+b^2\right)+13ab\)
mặ khác ta có \(13ab⋮13\)\(a^2+b^2⋮13\left(gt\right)\Rightarrow6\left(a^2+b^2\right)⋮13\)\(\Rightarrow\left(2a+3b\right)\left(2b+3a\right)⋮13\)
\(\Rightarrow\)2a+3b hoặc 2b+3a chia hết cho 13
1/ b) Đặt \(\sqrt[3]{6x+4}=a\Rightarrow a^3=6x+4\)
Ta có hệ: \(\left\{{}\begin{matrix}x^3=6a+4\\a^3=6x+4\end{matrix}\right.\)
Lấy pt trên trừ pt dưới vế với vế, suy ra:
\(\left(x-a\right)\left(x^2+ax+a^2+6\right)=0\)
\(\Leftrightarrow x=a\Leftrightarrow x^3-6x-4=0\Leftrightarrow\left(x+2\right)\left(x^2-2x-2\right)=0\)
Ta có:
\(n^n-n^2+n-1=n^n-n-\left(n^2-2n+1\right)\)
\(=\left(n^2-n\right)\left(n^{n-2}+n^{n-3}+...+n+1\right)-\left(n-1\right)^2\)
\(=\left(n-1\right)\left[\left(n^{n-1}-1\right)+\left(n^{n-2}-1\right)+....+\left(n-1\right)\right]-\left(n-1\right)^2\)
Dễ thấy \(n^{n-1}-1⋮n-1\)
\(n^{n-2}-1⋮n-1\)
........................................
\(n-1⋮n-1\)
\(\Rightarrow n^n-n^2+n-1⋮\left(n-1\right)^2\)