K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2017

Ta có 

           \(3x^2+3y^2+z^2=\left(2x^2+\frac{z^2}{2}\right)+\left(2y^2+\frac{z^2}{2}\right)+\left(x^2+y^2\right)\ge2\left(xz+yz+xy\right)=2\cdot5=10\left(dpcm\right)\)

                                             

NV
13 tháng 6 2020

Bunhiacopxki: \(\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)\ge\left(xy+yz+zx\right)^2\)

\(\Rightarrow\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)

Thiết lập tương tự và cộng lại:

\(\Rightarrow VT\le\frac{xy\left(y^2+yz+zx\right)+yz\left(z^2+xy+zx\right)+zx\left(x^2+yz+xy\right)}{\left(xy+yz+zx\right)^2}\)

\(VT\le\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\)

Ta chỉ cần chứng minh: \(\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\le\frac{x^2+y^2+z^2}{xy+yz+zx}\)

\(\Leftrightarrow xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz\le\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2yz+xy^2z+xyz^2\le x^3y+y^3z+z^3x\)

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge x+y+z\) (đúng theo Cauchy-Schwarz)

Dấu "=" xảy ra khi \(x=y=z\)

13 tháng 6 2020

@Nguyễn Việt Lâm

NV
13 tháng 6 2020

BĐT của bạn bị ngược dấu, mà có vẻ các mẫu số cũng ko đúng (để ý mẫu số thứ 2 và thứ 3 đều có chung xy+xz ko hợp lý)

22 tháng 12 2015

Le Tran Anh này, bạn biết làm không mà bảo ng khác ngu? Nếu biết thì giải đi...

19 tháng 8 2023

Để chứng minh bất đẳng thức trên, ta sẽ sử dụng phương pháp giả sử ngược (Proof by Contradiction). Giả sử bất đẳng thức trên không đúng, tức là: (5x^3 - y^3)/(3x^2 + xy + 5y^3) + (5y^3 - z^3)/(3y^2 + yz + 5z^3) + (5z^3 - x^3)/(3z^2 + xz + 5x^3) > x + y + z Ta có thể viết lại bất đẳng thức trên thành: (5x^3 - y ^3)/(3x^2 + xy + 5y^3) - x + (5y^3 - z^3)/(3y^2 + yz + 5z^3) - y + (5z^3 - x^3 )/(3z^2 + xz + 5x^3) - z > 0 Tiếp theo, ta nhận thấy rằng với mọi a, b > 0, ta luôn có: (a^3 - b^3)/(a^2 + ab + b^2) - a > 0 and (a^3 - b^3)/(a^2 + ab + b^2) - b > 0. Vì vậy, áp dụng bất đẳng thức trên từng phần thức trong tổng, ta có: (5x^3 - y^3)/(3x^2 + xy + 5y^3) - x > 0 (5y ^3 - z^3)/(3y^2 + yz + 5z ^3) - y > 0 (5z^3 - x^3)/(3z^2 + xz + 5x^3) - z > 0 Khi đặt a = x^3, b = y^3, c = z^3, ta có: (5a - b)/(3a^2 + ab + 5b) - a^(1/3) > 0 (5b - c)/(3b^2 + bc + 5c) - b^(1/3) > 0 (5c - a)/(3c^2 + ac + 5a) - c^(1/3) > 0 Nói cách khác, ta có các bất đẳng thức sau: (5a - b)/(3a^2 + ab + 5b) > a^(1/3) (5b - c)/(3b^2 + bc + 5c) > b^(1/3) ( 5c - a)/(3c^2 + ac + 5a) > c^( 1/3) Áp dụng bất đẳng thức AM-GM, ta có: 3a^2 + ab + 5b ≥ 3∛(15a^2b) 3b^2 + bc + 5c ≥ 3∛(15b^2c) 3c^2 + ac + 5a ≥ 3∛(15c^2a) Khi đặt A = 3a^2 + ab + 5b, B = 3b^2 + bc + 5c, C = 3c^2 + ac + 5a, ta có: A > a ^ (1/3) B > b^(1/3) C > c^(1/3) Từ đó, ta có: (A + B + C) > (a^(1/3) + b^(1/3) + c^(1/3)) Nhưng A, B, C lần lượt tương ứng với các số mẫu trong bất đẳng thức ban đầu, ta thu được: (5a - b)/(3a^2 + ab + 5b) + (5b - c)/(3b^2 + bc + 5c) + (5c - a)/(3c^ 2 + ac + 5a) > (a^(1/3) + b^(1/3) + c^(1/3)) Tuy nhiên, điều này trái với giả định ban đầu.

23 tháng 5 2017

Xem lại đề đi bạn. Thấy có vẻ sai sai sao ấy Kan Zandai Nalaza 

23 tháng 5 2017

vẻ vang gì 100% sai

1 tháng 11 2017

\(\left\{{}\begin{matrix}xy-2x-y=2\\yz-3y-2z=3\\xz-3x-z=13\end{matrix}\right.\)

Dễ thấy \(z=3\) không phải là nghiệm của hệ.

\(\Leftrightarrow\left\{{}\begin{matrix}x.\dfrac{3+2z}{z-3}-2x-\dfrac{3+2z}{z-3}=2\\y=\dfrac{3+2z}{z-3}\\xz-3x-z=13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4z-3}{9}\\y=\dfrac{3+2z}{z-3}\\z.\dfrac{4z-3}{9}-3.\dfrac{4z-3}{9}-z=13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4z-3}{9}\\y=\dfrac{3+2z}{z-3}\\z^2-6z-27=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4z-3}{9}\\y=\dfrac{3+2z}{z-3}\\\left(z-9\right)\left(z+3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}z=9\\x=\dfrac{11}{3}\\y=\dfrac{7}{2}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}z=-3\\x=-\dfrac{5}{3}\\y=\dfrac{1}{2}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
5 tháng 1 2018

Lời giải:

Vì \(xy+yz+xz=5\Rightarrow x^2+5=x^2+xy+yz+xz\)

\(\Leftrightarrow x^2+5=(x+y)(x+z)\)

\(\Rightarrow \sqrt{6(x^2+5)}=\sqrt{6(x+y)(x+z)}\)

Áp dụng BĐT AM-GM:

\(\sqrt{6(x+y)(x+z)}=\frac{\sqrt{6}}{2}.2\sqrt{(x+y)(x+z)}\leq \frac{\sqrt{6}}{2}(x+y+x+z)\)

\(\Leftrightarrow \sqrt{6(x^2+5)}\leq \frac{\sqrt{6}}{2}(2x+y+z)\)

Thực hiện tương tự với các hạng tử còn lại suy ra:

\(\sqrt{6(x^2+5)}+\sqrt{6(y^2+5)}+\sqrt{6(z^2+5)}\leq \frac{\sqrt{6}}{2}(4x+2y+4z)=2\sqrt{6}(x+y+z)\)

\(\Rightarrow \frac{3x+3y+3z}{\sqrt{6(x^2+5)}+\sqrt{6(y^2+5)}+\sqrt{6(z^2+5)}}\geq \frac{3(x+y+z)}{2\sqrt{6}(x+y+z)}=\frac{3}{2\sqrt{6}}\)

Vậy min bằng \(\frac{3}{2\sqrt{6}}\)

Dấu bằng xảy ra khi \(x=y=z=\sqrt{\frac{5}{3}}\)