Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này phải nói rất rắc rối và chỉ có đọc hiểu chứ giải thì k phải chuyện đơn giản
cho bạn tham khảo nè
Với n=1 thì 1^3+2*1=3 chia hết cho 3
Với n>1 thì Giả sử n^3+2n chia hết cho 3
Chúng ta cần chứg minh (n+1)^3+2(n+1) chia hết cho 3
\(A=\left(n+1\right)^3+2\left(n+1\right)\)
\(=n^3+3n^2+3n+1+2n+2\)
=n^3+3n^2+5n+3
=n^3+2n+3n^2+3n+3n+3
=n^3+2n+3(n^2+n+n+1) chia hết cho 3
=>ĐPCM
Ta có; x < A ⇔ - A < x < A .
Suy ra; nếu a < b thì - b < a < b ⇒ - b ≤ a ≤ b
Nếu a, b là những số thực và a ≤ b thì a 2 ≤ b 2 ⇔ a 2 ≤ b 2
Gọi H1, H2, H3 lần lượt là trực tâm ΔABC1, ΔBCA1, ΔCAB1
Ta có : \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC_1}=\overrightarrow{OH}_1\left(1\right)\)
\(\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OA}_1=\overrightarrow{OH}_2\left(2\right)\)
\(\overrightarrow{OC}+\overrightarrow{OA}+\overrightarrow{OB}_1=\overrightarrow{OH}_3\left(3\right)\)
Trừ theo vế (1) , (2) ta có :
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC'}+\overrightarrow{BO}+\overrightarrow{CO}+\overrightarrow{A_1O}=\overrightarrow{OH_1}+\overrightarrow{H_2O}\)
\(\Leftrightarrow\overrightarrow{A_1A}+\overrightarrow{CC_1}=\overrightarrow{H_2H_1}\)
TƯƠNG TỰ TRỪ THEO VẾ (2) , (3) ta được :
\(\overrightarrow{B_1B}+\overrightarrow{A_1A}=\overrightarrow{H_3H_2}\)
Lại có: AA1//BB1//CC1 (gt)
\(\Rightarrow\)vt AA1, vtA1A, vt B1B, CC1 cùng phương
\(\RightarrowĐPCM\)
Câu hỏi của Trịnh Gia Long - Toán lớp 8 - Học toán với OnlineMath
Đây anh nhé!
Ta có: \(abc⋮37\)
\(\Rightarrow100a+10+c⋮37\\ \Rightarrow1000a+100b+10c⋮37\\ \Rightarrow100a-999a+100b+10c⋮37\\ \Rightarrow100b+10c+a⋮37\)