K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

1) \(x^2-2mx+m-2=0\) (1) 

pt (1) có \(\Delta'=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\left(\forall m\right)\) 

=> pt luôn có 2 nghiệm phân biệt x1, x2 

Vi-et: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}}\)\(\Rightarrow\)\(M=\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1^2+x_2^2-6x_1x_2}=\frac{2x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{2m-4-2m}{\left(2m\right)^2-8m-16}\)

\(=\frac{-4}{4m^2-8m-16}=\frac{-4}{4\left(m-1\right)^2-20}\ge\frac{-4}{-20}=\frac{1}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)

xin 1slot sáng giải

a: \(\Delta=\left(2m+2\right)^2-4\cdot4m=4m^2+8m+4-16m=\left(2m-2\right)^2\)

Để phương trình có nghiệm kép thì 2m-2=0

hay m=2

b: Thay x=4 vào pt, ta được:

\(16-8\left(m+1\right)+4m=0\)

=>16-8m-4+4m=0

=>12-4m=0

hay m=3

c: Để phương trình có hai nghiệm cùng dấu thì 2(m+1)>0

=>m>-1

e: Để phương trình có hai nghiệm dương thì \(\left\{{}\begin{matrix}m+1>0\\4m>0\end{matrix}\right.\Leftrightarrow m>0\)

NV
8 tháng 11 2019

\(\left\{{}\begin{matrix}k\ne-2\\\Delta'=k^2+k\left(k+2\right)>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k\ne-2\\\left[{}\begin{matrix}k\ge0\\k\le-1\end{matrix}\right.\end{matrix}\right.\)

Theo định lý Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2k}{k+2}\\x_1x_2=\frac{-k}{k+2}\end{matrix}\right.\)

\(\frac{x_1+x_2}{2}=1\)

\(\Leftrightarrow x_1+x_2=2\)

\(\Leftrightarrow\frac{2k}{k+2}=2\)

\(\Leftrightarrow2k=2k+4\)

Không tồn tại k thỏa mãn

15 tháng 10 2020

\(-x^2+2x+m-1=0\Leftrightarrow x^2-2x-m+1=0\)

Để phương trình có hai nghiệm phân biệt \(\Leftrightarrow\Delta^'=\left(-1\right)^2-\left(-m+1\right).1=m\ge0\)

Vậy \(m\ge0\)