K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2022

Hình như đề bài sai hoặc cách diễn đạt tối nghĩa bạn ạ

Giả sử cho hai số p và q là 9 và 10 ( lớn hơn ba rồi)

P^2-q^2=100-81=19 hông chia hết cho 24

6 tháng 4 2022

AH
Akai Haruma
Giáo viên
5 tháng 7 2019

Bài 1:

$a^2-1=(a-1)(a+1)$

Vì $a$ là số nguyên tố lớn hơn $3$ nên $a$ không chia hết cho $3$. Suy ra $a$ chia $3$ dư $1$ hoặc $2$

Nếu $a$ chia $3$ dư $1\Rightarrow a-1\vdots 3\Rightarrow a^2-1=(a-1)(a+1)\vdots 3$

Nếu $a$ chia $3$ dư $2\Rightarrow a+1\vdots 3\Rightarrow a^2-1=(a-1)(a+1)\vdots 3$

Vậy $a^2-1\vdots 3(1)$

Mặt khác, $a$ là số nguyên tố lớn hơn $3$ thì $a$ lẻ. Do đó $a$ có dạng $4k+1$ hoặc $4k+3$ ($k\in\mathbb{Z}$)

Nếu \(a=4k+1\Rightarrow a^2-1=(4k+1)^2-1=16k^2+8k\vdots 8\)

Nếu \(a=4k+3\Rightarrow a^2-1=(4k+3)^2-1=16k^2+24k+8\vdots 8\)

Vậy $a^2-1\vdots 8(2)$

Từ $(1);(2)$ mà $(3,8)=1$ nên $a^2-1\vdots 24$ (đpcm)

AH
Akai Haruma
Giáo viên
5 tháng 7 2019

Bài 2:

Từ bài 1 ta thấy rằng với mọi số $a$ là số nguyên tố lớn hơn 3 thì $a^2-1\vdots 24(1)$

Tương tự $b^2-1\vdots 24(2)$

Từ \((1);(2)\Rightarrow (a^2-1)-(b^2-1)\vdots 24\)

\(\Leftrightarrow a^2-b^2\vdots 24\) (đpcm)

27 tháng 1 2019

\(\text{Giải}\)

\(a^2-b^2=\left(a-b\right)\left(b+a\right)\)

\(\text{Vì: a,b là các số nguyên tố lớn hơn 3 nên: a,b lẻ}\)

\(\text{suy ra a-b và a+b đồng thời chẵn}\)

\(\text{Mặt khác: a-b và a+b chắc chắn có 1 số chia hết cho 2 và 1 số chia hết cho 4}\)

\(\Rightarrow a^2-b^2⋮2.4=8\left(1\right)\)

\(\text{vì a và b là các số nguyên tố lớn hơn 3 nên chia 3 dư 1 hoặc dư 2}\)

\(\text{với a và b cùng số dư thì a bình trừ b bình chia hết cho 3(bình là mũ hai nhé)}\)

\(\text{với a và b khác số dư thì a+b chia hết cho 3 suy ra a bình trừ b bình chia hết cho 3}\)

\(\Rightarrow a^2-b^2⋮3\left(2\right)\)

\(\text{từ (1) và (2) suy ra: a^2-b^2 chia hết cho 24(đpcm)}\)

14 tháng 10 2020

1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1

Thay vào ab=cd được ka1b=bc1d nên

a1b=c1d  (1)

Ta có: a1\(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m =  c1d nên a1m=d

Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)

\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)

Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)

14 tháng 10 2020

2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.

Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.

Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)

b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)

Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......

30 tháng 7 2016

ta chứng minh nó chia hết cho 3 và 8

30 tháng 7 2016

ai chả bt ngon giải ik 

30 tháng 10 2016

\(n^4+2n^3-n^2-2n\)

\(=n^2\left(n^2-1\right)+2n\left(n^2-1\right)\)

\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Tích của 4 số nguyên liên tiếp chia hết cho 24

=> n4 + 2n3 - n2 - 2n chia hết cho 24.

30 tháng 10 2016

\(n^4+2n^3-n^2-2n=n^3\left(n+2\right)-n\left(n+2\right)=n\left(n+2\right)\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Trong \(4\) số tự nhiên liên tiếp có \(2\) số chẵn liên tiếp
Trong hai số chẵn liên tiếp có :
+) Một số chẵn chia hết cho \(2\)
+) Một số chẵn chia hết cho \(4\)

Nên tích \(2\) số chẵn liên tiếp chia hết cho \(8\)
Hay tích \(4\) số tự nhiên liên tiếp chia hết cho \(8\)
Ta cũng có : Tích \(3\) số tự nhiên chia hết cho \(3\)
Hay tích \(4\) số tự nhiên liên tiếp chia hết cho \(3\)
Vậy tích \(4\) số tự nhiên liên tiếp chia hết cho \(3\)

Vậy tích \(4\) số tự nhiên liên tiếp chia hết cho \(24\left(=8.3\right)\)

Hay \(n^4+2n^3-n^2-2n⋮24\forall n\in Z\)

 

 

1: Vì 7 là số nguyên tố nên \(n^7-n⋮7\)

2: \(A=n^3+11n\)

\(=n^3-n+12n\)

\(=n\left(n-1\right)\left(n+1\right)+12n⋮6\)

3: \(=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\)