\(=(\)m + 2n + 1 \()\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2020

Bài 1 : https://h.vn/hoi-dap/question/576866.html

Bài 2 : https://h.vn/hoi-dap/question/781198.html

Tham khảo nhé .Đang bận ko làm đc

10 tháng 7 2019

a. \(\left(\frac{-1}{5}\right)^n=\frac{-1}{125}\)

<=> \(\left(\frac{-1}{5}\right)^n=\left(\frac{-1}{5}\right)^3\)

<=> n = 3

b. \(\left(\frac{-2}{11}\right)^m=\frac{4}{121}\)

<=> \(\left(\frac{-2}{11}\right)^m=\left(\frac{2}{11}\right)^2\)

<=> m = 2

c. 72n + 72n+2 = 2450

<=> 72n + 72n . 72 = 2450

<=> 72n.(1+72)        = 2450

<=> 72n                  = 72

<=> 2n                  = 2

<=> n = 1

6 tháng 8 2016

Bài 2:\(A=\frac{n+1}{n-2009}=\frac{n-2009+2010}{n-2009}=\frac{n-2009}{n-2009}+\frac{2010}{n-2009}=1+\frac{2010}{n-2009}\)

Để A có giá trị lớn nhất \(1+\frac{2010}{n-2009}\)cũng có giá trị lớn nhất =>\(\frac{2010}{n-2009}\)cũng có giá trị lớn nhất => \(n-2009\inƯ\left(2010\right)\)

và \(n-2009\in N\left(n\in Z\right)\)và bé nhất (để\(\frac{2010}{n-2009}\)lớn nhất)

=>n - 2009 = 1 =>n = 2010

Thay n = 2010 vào \(1+\frac{2010}{n-2009}\)ta được: \(1+\frac{2010}{2010-2009}=1+2010=2011\)

Vậy giá trị lớn nhất của A là 2011 khi n=2010

6 tháng 8 2016

Bài 1:\(A=\frac{5-2n}{n+3}=\frac{9-4+2n}{n+3}=\frac{9}{n+3}-\frac{4+2n}{n+3}=\frac{9}{n+3}-2\)

Để \(A\in N\)thì\(\frac{9}{n+3}-2\in N\Rightarrow\frac{9}{n+3}\in N\Rightarrow n+3\inƯ\left(9\right)\)

Ta có bảng sau:

  n + 3  9 -9  3  -3  1  -1
     n  6 -12  0  -6  -2  -4
15 tháng 1 2019

đặt mỗi biểu thức trên = một số mũ 2 là đc

15 tháng 1 2019

a) \(n^2+2n+12\) là số chính phương nên \(n^2+2n+12=m^2\ge0\)

Xét m = 0 thì \(n^2+2n+12=0\) (1)

Đặt \(\Delta=b^2-4ac=2^2-4.1.12< 0\)

Do \(\Delta< 0\) nên (1) vô nghiệm  (*)

Mặt khác n là số tự nhiên nên \(n^2+2n+12\) là số tự nhiên nên \(m\ge1\)

Xét \(n^2+2n+12\ge1\Leftrightarrow n^2+2n+11\ge0\) (2)

Đặt \(\Delta=b^2-4ac=2^2-4.1.11< 0\)

Do \(\Delta< 0\) nên (2) vô nghiệm (**)

Từ (*) và (**),ta dễ dàng suy ra không có số n nào thỏa mãn \(n^2+2n+12\) là số chính phương (không chắc)

1 tháng 8 2018

a,b,c tỉ lệ với  m, m+n, m+2n  =>  \(\frac{a}{m}=\frac{b}{m+n}=\frac{c}{m+2n}=k\)

=>  \(a=mk;\)\(b=\left(m+n\right)k=mk+nk\);   \(c=\left(m+2n\right)k=mk+2nk\)

Ta có:  \(VT=4\left(a-b\right)\left(b-c\right)=4\left(mk-mk-nk\right)\left(mk+nk-mk-2nk\right)\)

            \(=4\left(-nk\right)\left(-nk\right)=4n^2k^2\)

\(VP=\left(c-a\right)^2=\left(mk+2nk-mk\right)^2=\left(2nk\right)^2=4n^2k^2\)

suy ra: đpcm

17 tháng 5 2019

Có: x:y:z=2:3:5

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k.5k.3k=810\Leftrightarrow k^3=27\Leftrightarrow k=3\)

=> x=...

y=...

z=...

17 tháng 5 2019

Có: VT\(\ge0\)( tự xét )

Theo bài ra lại có: VT\(\le0\)

=> VT=0

\(\Rightarrow\hept{\begin{cases}x_1p=y_1q\\.............\\x_mp=y_mq\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x_1}{y_1}=\frac{q}{p}\\...............\\\frac{x_m}{y_m}=\frac{q}{p}\end{cases}}\)

\(\Rightarrow\frac{x_1}{y_1}=\frac{x_2}{y_2}=.....=\frac{x_m}{y_m}=\frac{q}{p}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

........................................................................

những bài khác chốc về làm nốt cho