\(\frac{AB}{CD}\)=\(\frac{MN}{PQ}\)thì 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2020

do AB/CD=MN/PQ => AB.PQ=MN.CD

TA CÓ: AB.PQ=MN.CD=>AB.PQ+CD.PQ=MN.CD+CD.PQ=>PQ(AB+CD)=CD(MN+PQ)=>AB+CD/CD=MN+PQ/PQ

TA CÓ: AB.PQ=MN.CD=>AB.PQ-CD.PQ=MN.CD-CD.PQ=>PQ(AB-CD)=CD(MN-PQ)=>AB-CD/CD=MN-PQ/PQ

NHỚ

13 tháng 12 2019

GIÚP VỚI

16 tháng 6 2017

Ta có hình vẽ(hơi xấu tí,chỉ minh họa thôi ha) A B C D P Q K Gọi K là trung điểm của BD

Theo tính chất đường trung bình trong tam giác ,ta có:

tam giác ABD có PA=PB;KB=KD

=>PK là đường trung bình của tam giác ABD=>\(PK=\frac{1}{2}AD\)(1)

Tượng tự với tam giác BDC ta có:\(KQ=\frac{1}{2}BC\)(2)

Theo BĐT tam giác ta có :

tam giác PKQ có: \(PK+KQ>PQ\)

từ (1) và (2)=>\(PQ< \frac{AD+BC}{2}\left(đpcm\right)\)

a) \(\frac{AB+CD}{CD}=\frac{AB}{CD}+1\)Hay \(\frac{AB+CD}{CD}=\frac{4}{5}+1=\frac{9}{5}\)

b) \(\frac{C'D'-A'B'}{A'B'}=\frac{C'D'}{A'B'}-1\)Hay \(\frac{C'D'-A'B'}{A'B'}=\frac{5}{4}-1=\frac{1}{4}\)

=> \(\frac{A'B'}{C'D'-A'B'}=4\)

c) Ta có: 3CD = C'D' => \(\frac{CD}{C'D'}=\frac{1}{3}\)

Mà \(\frac{CD}{C'D'}=\frac{AB}{A'B'}\) nên \(\frac{AB}{A'B'}=\frac{1}{3}\)

2 tháng 8 2018

A B C D O J I

Vì OJ // AB, theo định lý Ta-lét ta có:

\(\dfrac{OB}{DB}=\dfrac{JA}{DA}\) (1)

Vì OJ // AB, theo hệ quả của định lý Ta-lét ta có:

\(\dfrac{OD}{DB}=\dfrac{OJ}{AB}\) (2)

Mà OJ // CD, theo hệ quả của định lý Ta-lét ta có:

\(\dfrac{OA}{AC}=\dfrac{JA}{DA}\) (3)

Vì OI // AB, theo định lý Ta-lét ta có:

\(\dfrac{OA}{AC}=\dfrac{OJ}{CD}\) (4)

Vì OI // CD, theo hệ quả của định lý Ta-lét ta có:

\(\dfrac{OB}{DB}=\dfrac{OI}{CD}\) (5)

Từ (1), (3) \(\Rightarrow\dfrac{OB}{DB}=\dfrac{OA}{AC}\) (6)

Từ (4), (5), (6) \(\Rightarrow\dfrac{OJ}{CD}=\dfrac{OI}{CD}\)

\(\Rightarrow OJ=OI\) (7)

Ta có biểu thức : \(\dfrac{1}{AB}+\dfrac{1}{CD}\)(8)

Từ (2), (7) \(\Leftrightarrow AB=\dfrac{DB.OI}{OD}\) (9)

(5) \(CD=\dfrac{DB.OI}{OB}\) (10)

Thay (9), (10) vào biểu thức (8) ta có:

1:\(\dfrac{DB.OI}{OD}+1:\dfrac{DB.OI}{OB}\)

= \(1.\dfrac{OD}{DB.OI}+1.\dfrac{OB}{DB.OI}\)

= \(\dfrac{OD}{DB.OI}+\dfrac{OB}{DB.OI}\)

=\(\dfrac{OD+OB}{DB.OI}\)

=\(\dfrac{DB}{DB.OI}=\dfrac{1}{OI}\)

\(\Rightarrow\dfrac{1}{OI}=\dfrac{1}{AB}+\dfrac{1}{CD}\) (11)

b) Từ (7) \(\Rightarrow\) OJ = OI = \(\dfrac{1}{2}IJ\)

\(\Leftrightarrow IJ=2OI\)

\(\Leftrightarrow\dfrac{1}{OI}=\dfrac{2}{IJ}\) (12)

Từ (11), (12) \(\Rightarrow\dfrac{2}{IJ}=\dfrac{1}{AB}+\dfrac{1}{CD}\)

28 tháng 1 2024

cho mình hỏi bạn vừa trl với cái biểu thức 8 cậu lấy đâu ra