Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ(hơi xấu tí,chỉ minh họa thôi ha) A B C D P Q K Gọi K là trung điểm của BD
Theo tính chất đường trung bình trong tam giác ,ta có:
tam giác ABD có PA=PB;KB=KD
=>PK là đường trung bình của tam giác ABD=>\(PK=\frac{1}{2}AD\)(1)
Tượng tự với tam giác BDC ta có:\(KQ=\frac{1}{2}BC\)(2)
Theo BĐT tam giác ta có :
tam giác PKQ có: \(PK+KQ>PQ\)
từ (1) và (2)=>\(PQ< \frac{AD+BC}{2}\left(đpcm\right)\)
a) \(\frac{AB+CD}{CD}=\frac{AB}{CD}+1\)Hay \(\frac{AB+CD}{CD}=\frac{4}{5}+1=\frac{9}{5}\)
b) \(\frac{C'D'-A'B'}{A'B'}=\frac{C'D'}{A'B'}-1\)Hay \(\frac{C'D'-A'B'}{A'B'}=\frac{5}{4}-1=\frac{1}{4}\)
=> \(\frac{A'B'}{C'D'-A'B'}=4\)
c) Ta có: 3CD = C'D' => \(\frac{CD}{C'D'}=\frac{1}{3}\)
Mà \(\frac{CD}{C'D'}=\frac{AB}{A'B'}\) nên \(\frac{AB}{A'B'}=\frac{1}{3}\)
A B C D O J I
Vì OJ // AB, theo định lý Ta-lét ta có:
\(\dfrac{OB}{DB}=\dfrac{JA}{DA}\) (1)
Vì OJ // AB, theo hệ quả của định lý Ta-lét ta có:
\(\dfrac{OD}{DB}=\dfrac{OJ}{AB}\) (2)
Mà OJ // CD, theo hệ quả của định lý Ta-lét ta có:
\(\dfrac{OA}{AC}=\dfrac{JA}{DA}\) (3)
Vì OI // AB, theo định lý Ta-lét ta có:
\(\dfrac{OA}{AC}=\dfrac{OJ}{CD}\) (4)
Vì OI // CD, theo hệ quả của định lý Ta-lét ta có:
\(\dfrac{OB}{DB}=\dfrac{OI}{CD}\) (5)
Từ (1), (3) \(\Rightarrow\dfrac{OB}{DB}=\dfrac{OA}{AC}\) (6)
Từ (4), (5), (6) \(\Rightarrow\dfrac{OJ}{CD}=\dfrac{OI}{CD}\)
\(\Rightarrow OJ=OI\) (7)
Ta có biểu thức : \(\dfrac{1}{AB}+\dfrac{1}{CD}\)(8)
Từ (2), (7) \(\Leftrightarrow AB=\dfrac{DB.OI}{OD}\) (9)
(5) \(CD=\dfrac{DB.OI}{OB}\) (10)
Thay (9), (10) vào biểu thức (8) ta có:
1:\(\dfrac{DB.OI}{OD}+1:\dfrac{DB.OI}{OB}\)
= \(1.\dfrac{OD}{DB.OI}+1.\dfrac{OB}{DB.OI}\)
= \(\dfrac{OD}{DB.OI}+\dfrac{OB}{DB.OI}\)
=\(\dfrac{OD+OB}{DB.OI}\)
=\(\dfrac{DB}{DB.OI}=\dfrac{1}{OI}\)
\(\Rightarrow\dfrac{1}{OI}=\dfrac{1}{AB}+\dfrac{1}{CD}\) (11)
b) Từ (7) \(\Rightarrow\) OJ = OI = \(\dfrac{1}{2}IJ\)
\(\Leftrightarrow IJ=2OI\)
\(\Leftrightarrow\dfrac{1}{OI}=\dfrac{2}{IJ}\) (12)
Từ (11), (12) \(\Rightarrow\dfrac{2}{IJ}=\dfrac{1}{AB}+\dfrac{1}{CD}\)
do AB/CD=MN/PQ => AB.PQ=MN.CD
TA CÓ: AB.PQ=MN.CD=>AB.PQ+CD.PQ=MN.CD+CD.PQ=>PQ(AB+CD)=CD(MN+PQ)=>AB+CD/CD=MN+PQ/PQ
TA CÓ: AB.PQ=MN.CD=>AB.PQ-CD.PQ=MN.CD-CD.PQ=>PQ(AB-CD)=CD(MN-PQ)=>AB-CD/CD=MN-PQ/PQ
NHỚ