\(\frac{7\times n^2+1}{6}\)\(\in N\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2018

Để \(\frac{7\times n^2+1}{6}\in N\) thì \(7\times n^2+1⋮6\)

Nếu \(n⋮6\) thì \(7\times n^2+1\) chia cho 6 dư 1\(\Rightarrow\frac{7\times n^2+1}{6}\notin N\)

Nếu \(n⋮̸6\) thì \(n^2\) chia 6 chỉ dư 1,4,3\(\Rightarrow7\times n^2\) chia cho 6 dư 1,4,3

\(\Rightarrow7\times n^2+1\) chia cho 6 dư 2,5,4

\(\Rightarrow\frac{7\times n^2+1}{6}\notin N\)

Vậy không có \(n\in N\) thỏa mãn \(\frac{7\times n^2+1}{6}\in N\)

23 tháng 1 2018

 5n2+1⋮6=>5n2−5⋮6=>(n−1)(n+1)⋮65n2+1⋮6=>5n2−5⋮6=>(n−1)(n+1)⋮6 *

Giả sử n chẵn =>(n−1)(n+1)(n−1)(n+1) không chia hết 2 (trái với *)

=> n nguyên tố với 2 =>\(\frac{n}{2}\) tối giản

Giả sử n chia hết 3 => (n−1)(n+1)(n−1)(n+1) không chia hết 3 (trái với *)

=> n nguyên tố với 3 =>\(\frac{n}{3}\) tối giản

7 tháng 4 2020

Trl :

Bạn kia làm đúng rồi nhé !

Học tốt nhé bạn @

4 tháng 2 2022

hahaa

20 tháng 2 2018

1) Vì ƯCLN ( n + 5 ; n + 6 ) = 1

2) Gọi ƯCLN ( 3n + 5 ; 4n + 7 ) là d

  => ( 3n + 5 ) \(⋮\)d

        ( 4n + 7 ) \(⋮\)d

=>   4(3n + 5 ) \(⋮\)d

       3 ( 4n + 7 ) \(⋮\)d

=> 12n + 20 \(⋮\)d

     12n + 21 \(⋮\)d

=> d = 1

=>3n+5/4n+7 là phân số tối giản

câu 3 làm tương tự câu 2

            #๖ۣۜβσʂʂ彡

20 tháng 2 2018

Bổ sung câu 1 của Thiên Ân :

Để \(\frac{n+5}{n+6}\)là phân số tối giản 

=> ƯCLN ( n + 5 ; n + 6 ) = 1

Gọi ƯCLN ( n + 5 ; n + 6 ) = d

=> n + 5 \(⋮\)d và n + 6  \(⋮\)d  ( 1 )

Từ 1 

=> ( n + 6 ) - ( n + 5 )  \(⋮\)

=> 1  \(⋮\)d  

=> d \(\in\)Ư ( 1 )

=> d = 1

=>  \(\frac{n+5}{n+6}\)là phân số tối giản => đpcm

8 tháng 4 2016

Đây chính là một trong những phần thi học giỏi mà mình không làm được nè

8 tháng 4 2016

giúp gon trên voeis duwois nhé