\(\frac{1}{a}+\frac{1}{b}\)\(+\frac{1}{c}=2\)

V...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2019

thì \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}???\)

2 tháng 5 2019

viết nốt đề bài : thì 1/a^2 + 1/b^2 + 1/c^2 = 2

Từ 1/a + 1/b + 1/c = 2 bình phương hai vế ta có: 
. . . (1/a + 1/b + 1/c)² = 2² 
=> 1/a² + 1/b² + 1/c² + 2(1/ab + 1/bc + 1/ ca) = 4 
=> 1/a² + 1/b² + 1/c² + 2(a + b + c)/abc = 4 (Quy đồng MTC= abc) 
=> 1/a² + 1/b² + 1/c² + 2abc/abc = 4 (Vì a + b + c = abc) 
=> 1/a² + 1/b² + 1/c² + 2 = 4 
=> 1/a² + 1/b² + 1/c² = 2 (Đpcm)

 

6 tháng 10 2019

a) Ta có: \(\frac{a+2}{a-2}=\frac{b+3}{b-3}.\)

\(\Leftrightarrow\frac{a+2}{b+3}=\frac{a-2}{b-3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a+2}{b+3}=\frac{a-2}{b-3}=\frac{a+2+a-2}{b+3+b-3}=\frac{2a}{2b}=\frac{a}{b}\) (1)

\(\frac{a+2}{b+3}=\frac{a-2}{b-3}=\frac{a}{b}=\frac{4}{6}=\frac{2}{3}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{2}{3}\)

\(\Rightarrow\frac{a}{2}=\frac{b}{3}\left(đpcm\right).\)

Chúc bạn học tốt!

18 tháng 7 2016

\(\frac{a-c}{c-b}=\frac{a}{b}\Rightarrow b\left(a-c\right)=a\left(c-b\right)\)

\(\Rightarrow ba-bc=ac-ab\)

\(\Rightarrow2ab=ac+bc=c\left(a+b\right)\)

\(\Rightarrow\frac{2ab}{\left(a+b\right)}=c\Rightarrow\frac{a+b}{2ab}=\frac{1}{c}\Rightarrow\frac{1}{2}.\left(\frac{a}{ab}+\frac{b}{ab}\right)=\frac{1}{c}\Rightarrow\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{a}\right)=\frac{1}{c}\)

Câu b ấy, hình như sai đề, phải bằng \(\frac{a^{2016}+b^{2016}}{c^{2016}+d^{2016}}\)có lẽ mới đúng

18 tháng 7 2016

nếu như câu b đề như thế thì bạn có thể giải giúp mình được ko? mình cảm ơn bạn nhé!

17 tháng 2 2019

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{c}=\frac{1}{2}.\frac{a+b}{ab}\)

\(\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\Rightarrow2ab=\left(a+b\right).c\)

\(\Rightarrow ab+ab=ac+bc\Rightarrow ab-bc=ac-ab\)

\(\Rightarrow b\left(a-c\right)=a\left(c-b\right)\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)

17 tháng 2 2019

                        Giải

Ta có : \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Leftrightarrow\frac{1}{c}\div\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)

\(\Leftrightarrow\frac{1}{c}\times\frac{2}{1}=\frac{b}{ab}+\frac{a}{ab}\)

\(\Leftrightarrow\frac{2}{c}=\frac{b+a}{ab}\)

\(\Leftrightarrow2ab=c\left(b+a\right)\)

\(\Leftrightarrow ab+ab=bc+ac\)

\(\Leftrightarrow ac-ab=bc-ab\)

\(\Leftrightarrow a\left(c-b\right)=b\left(c-a\right)\)

Từ đẳng thức trên , ta áp dụng tính chất của tỉ lệ thức :

\(\frac{a}{b}=\frac{a-c}{c-b}\)

11 tháng 8 2018

\(\frac{a^4c^3+b^4a^3+c^4b^3}{a^3b^3c^3}\)\(\frac{b^4c+c^4a+a^4b}{abc}\)

\(\Rightarrow\)\(a^4c^3+b^4a^3+c^4b^3\)\(b^4c+c^4a+a^4b\)

\(\Rightarrow\)\(a^4\left(c^3-b\right)+b^4\left(a^3-c\right)+c^4\left(b^3-a\right)\)= 0

suy ra c^3 -b = 0 hoặc a^3 -c = 0 hoặc b^3 -a = 0

suy ra   đpcm

21 tháng 11 2018

đặt \(\hept{\begin{cases}x=\frac{a}{b^3}\\y=\frac{b}{c^3}\\z=\frac{c}{a^3}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{x}=\frac{b^3}{a}\\\frac{1}{y}=\frac{c^3}{b}\\\frac{1}{z}=\frac{a^3}{c}\end{cases}}\)khi đó  xyz=1

đề bài <=> x+y+z =1/x +1/y +1/z => x+y+z =yz+xz+xy

từ đó => xyz+  (x+y+z) -(xy+yz+xz)-1=0    <=> (x-1)(y-1)(z-1)=0

vây tồn tại x=1 =>a=b^3 (đpcm")

15 tháng 12 2018

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow c=\frac{1}{\frac{1}{2a}+\frac{1}{2b}}=\frac{1}{\frac{2\left(a+b\right)}{4ab}}=\frac{4ab}{2\left(a+b\right)}=\frac{2ab}{a+b}\)

\(\frac{a-c}{c-b}=\frac{a-\frac{2ab}{a+b}}{\frac{2ab}{a+b}-b}=\frac{a\left(1-\frac{2b}{a+b}\right)}{b\left(\frac{2a}{a+b}-1\right)}=\frac{a\left(\frac{a-b}{a+b}\right)}{b\left(\frac{a-b}{a+b}\right)}=\frac{a}{b}\)

\(\RightarrowĐPCM\)

2 tháng 2 2018

Có : a/ab+a+1 = a/ab+a+abc = 1/b+1+bc = 1/bc+b+1

        c/ca+c+1 = bc/abc+bc+b = b/1+bc+b = b/bc+b+1

=> A = 1+bc+b/bc+b+1 = 1

Tk mk nha

2 tháng 2 2018

BÀI 1:

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{a\left(bc+b+1\right)}+\frac{abc}{ab\left(ca+c+1\right)}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a} +\frac{abc}{a^2bc+abc+ab}\)        

\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\)       (thay   abc = 1)

\(=\frac{a+ab+1}{a+ab+1}=1\)