Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
b, a/b < c/d => ad < cb
=>ad +ab < bc+ab
=> a(d+b) < b(a+c)
=> a/b < a+c/d+b (1)
* a/b < c/d => ad<cb
=> ad + cd < cb +cd
=> d(a+c) < c(b+d)
=> c/d > a+c/b+d (2)
Từ (1) và (2) => a/b < a+c/b+d < c/d
Vì \(b,d>0\)nên \(bd>0\)
Ta có: \(\frac{a}{b}< \frac{c}{d}\)
\(\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\)
\(\Leftrightarrow ad< bc\)vì \(bd>0\)
Câu hỏi của ko ko - Toán lớp 6 - Học toán với OnlineMath
Tham khảo
Nếu \(ac=bd\) thì ta có:
\(\frac{a}{b}=\frac{d}{c}\) nên A đúng
Từ A\(\Rightarrow\frac{d}{c}=\frac{a+d}{b+c}\) nên B đúng
Từ A \(\Rightarrow\frac{a}{b}=\frac{d-a}{c-b}\) nên C đúng
Vậy D sai
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)
a)\(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)
\(\Leftrightarrow\left(a-b\right)\left(c+d\right)=\left(c-d\right)\left(a+b\right)\)
\(\Leftrightarrow ac-bc+ad-bd=ac-ad+bc-bd\)
\(\text{Thay }ad=bc\text{ vào}\Rightarrow ac-ad+ad-bd=ac-ad+ad-bd\)
\(\text{Đây là đẳng thức đúng }\Rightarrow\frac{a-b}{a+b}=\frac{c-d}{c+d}\text{ là đúng }\)
b)\(\text{Tương tự*}\)
a) \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\Leftrightarrow\frac{b}{a+b}=\frac{d}{c+d}\)
\(\Leftrightarrow\frac{-2b}{a+b}+1=\frac{-2d}{c+d}+1\Leftrightarrow\frac{a-b}{a+b}=\frac{c-d}{c+d}\)
b) \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{4a}{b}-5=\frac{4c}{d}-5\Leftrightarrow\frac{4a-5b}{b}=\frac{4c-5d}{d}\Leftrightarrow\frac{b}{4a-5b}=\frac{d}{4c-5d}\)
\(\Leftrightarrow\frac{11b}{4a-5b}+1=\frac{11d}{4c-5d}+1\Leftrightarrow\frac{4a+6b}{4a-5b}=\frac{4c+6d}{4c-5d}\Leftrightarrow\frac{2a+3b}{4a-5b}=\frac{2c+3d}{4c-5d}\)
\(\Leftrightarrow\frac{2a+3b}{2c+3d}=\frac{4a-5b}{4c-5d}\)
Ta có:2bd=c(b+d)
=>2bd=bc+cd
Mà a+c=2b (theo đề)
=>(a+c).d=bc+cd
=>ad+cd=bc+cd
=>ad=bc (cùng bớt đi cd)
=>a/b=c/d (đpcm)
Ta có :
\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< ac\Leftrightarrow ab+ad< ab+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)\(\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\)\(\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
(a+b+c+d)(a+d-b-c)=(a-b+c-d)(a+b-c-d)
=>(a+d)^2-(b+c)^2=(a-d)^2-(b-c)^2
=>(a+d)^2-(a-d)^2=(b+c)^2-(b-c)^2
=>(a+d-a+d)(a+d+a-d)=(b+c+b-c)(b+c-b+c)
=>4ad=4bc
=>ad=bc
=>a/c=b/d