K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(a+b+c+d)(a+d-b-c)=(a-b+c-d)(a+b-c-d)

=>(a+d)^2-(b+c)^2=(a-d)^2-(b-c)^2

=>(a+d)^2-(a-d)^2=(b+c)^2-(b-c)^2

=>(a+d-a+d)(a+d+a-d)=(b+c+b-c)(b+c-b+c)

=>4ad=4bc

=>ad=bc

=>a/c=b/d

a,

b,  a/b < c/d => ad < cb
=>ad +ab < bc+ab
=> a(d+b) < b(a+c)
=> a/b < a+c/d+b (1)
* a/b < c/d => ad<cb
=> ad + cd < cb +cd
=> d(a+c) < c(b+d) 
=> c/d > a+c/b+d (2)
Từ (1) và (2) => a/b < a+c/b+d < c/d

24 tháng 6 2019

Vì \(b,d>0\)nên \(bd>0\)

Ta có:  \(\frac{a}{b}< \frac{c}{d}\)

\(\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\)

\(\Leftrightarrow ad< bc\)vì \(bd>0\)

25 tháng 6 2019

Câu hỏi của ko ko - Toán lớp 6 - Học toán với OnlineMath

Tham khảo

20 tháng 12 2017

Nếu \(ac=bd\) thì ta có:

 \(\frac{a}{b}=\frac{d}{c}\) nên A đúng

Từ A\(\Rightarrow\frac{d}{c}=\frac{a+d}{b+c}\) nên B đúng

Từ A \(\Rightarrow\frac{a}{b}=\frac{d-a}{c-b}\) nên C đúng

Vậy D sai

19 tháng 9 2020

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)

a)\(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)

\(\Leftrightarrow\left(a-b\right)\left(c+d\right)=\left(c-d\right)\left(a+b\right)\)

\(\Leftrightarrow ac-bc+ad-bd=ac-ad+bc-bd\)

\(\text{Thay }ad=bc\text{ vào}\Rightarrow ac-ad+ad-bd=ac-ad+ad-bd\)

\(\text{Đây là đẳng thức đúng }\Rightarrow\frac{a-b}{a+b}=\frac{c-d}{c+d}\text{ là đúng }\)

b)\(\text{Tương tự*}\)

a) \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\Leftrightarrow\frac{b}{a+b}=\frac{d}{c+d}\)

\(\Leftrightarrow\frac{-2b}{a+b}+1=\frac{-2d}{c+d}+1\Leftrightarrow\frac{a-b}{a+b}=\frac{c-d}{c+d}\)

b) \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{4a}{b}-5=\frac{4c}{d}-5\Leftrightarrow\frac{4a-5b}{b}=\frac{4c-5d}{d}\Leftrightarrow\frac{b}{4a-5b}=\frac{d}{4c-5d}\)

\(\Leftrightarrow\frac{11b}{4a-5b}+1=\frac{11d}{4c-5d}+1\Leftrightarrow\frac{4a+6b}{4a-5b}=\frac{4c+6d}{4c-5d}\Leftrightarrow\frac{2a+3b}{4a-5b}=\frac{2c+3d}{4c-5d}\)

\(\Leftrightarrow\frac{2a+3b}{2c+3d}=\frac{4a-5b}{4c-5d}\)

28 tháng 3 2016

Ta có:2bd=c(b+d)

=>2bd=bc+cd

Mà a+c=2b (theo đề)

=>(a+c).d=bc+cd

=>ad+cd=bc+cd

=>ad=bc (cùng bớt đi cd)

=>a/b=c/d (đpcm)

8 tháng 7 2017

Ta có :

\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< ac\Leftrightarrow ab+ad< ab+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)\(\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\)\(\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

10 tháng 8 2021

\(\frac{a}{b}< \frac{c}{d}\left(1\right).\)Nhân 2 vế của (1) với bd ta có:

\(\frac{a}{b}\times bd=ad< \frac{c}{d}\times bd=bc\)( đpcm )

ad < bc ( 2 ).Chia 2 vế của (2) cho bd ta có:

\(\frac{ad}{bd}=\frac{a}{b}< \frac{bc}{bd}=\frac{c}{d}\left(Đpcm\right)\)

31 tháng 10 2015

Bạn vào câu hỏi tương tự nha !!! Tích cho mình đi !!!

10 tháng 9 2016

đặt k=a/b=c/d => a=bk;c=dk

=> \(\frac{a+b}{b}=\frac{b+bk}{b}=\frac{b\left(1+k\right)}{b}=1+k\)

=>\(\frac{c+d}{d}=\frac{dk+d}{d}=\frac{d\left(k+1\right)}{d}=k+1\)

=>nếu a/b=c/d thì a+b/b = c+d/d