Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phương trình đã cho có nghiệm nguyên thì
\(\Delta=a^2-4b\) phải là số chính phương lẻ.
\(\Rightarrow\Delta:8\)dư 1 (1)
Theo đề bài thì a, b lẻ nên ta đặt
\(\hept{\begin{cases}a=2m+1\\b=2n+1\end{cases}}\)
\(\Rightarrow\Delta=\left(2m+1\right)^2-4\left(2n+1\right)\)
\(=-8n+4m^2+4m-3\)
\(=-8n+4m\left(m+1\right)+8-5\)
\(\Rightarrow\Delta:8\) dư 5 (2)
Ta thấy (1) và (2) mâu thuẫn nhau nên nếu a, b lẻ thì phương trình không có nghiệm nguyên.
* Chứng minh:
Phương trình a x 2 + b x + c = 0 có hai nghiệm x 1 ; x 2
⇒ Theo định lý Vi-et:
Khi đó : a.(x – x1).(x – x2)
= a.(x2 – x1.x – x2.x + x1.x2)
= a.x2 – a.x.(x1 + x2) + a.x1.x2
=
= a . x 2 + b x + c ( đ p c m ) .
* Áp dụng:
a) 2 x 2 – 5 x + 3 = 0
Có a = 2; b = -5; c = 3
⇒ a + b + c = 2 – 5 + 3 = 0
⇒ Phương trình có hai nghiệm
Vậy:
b) 3 x 2 + 8 x + 2 = 0
Có a = 3; b' = 4; c = 2
⇒ Δ ’ = 4 2 – 2 . 3 = 10 > 0
⇒ Phương trình có hai nghiệm phân biệt:
3x2 + 8x + 2 = 0
Có a = 3; b' = 4; c = 2
⇒ Δ’ = 42 – 2.3 = 10 > 0
⇒ Phương trình có hai nghiệm phân biệt:
* Chứng minh:
Phương trình ax2 + bx + c = 0 có hai nghiệm x1; x2
⇒ Theo định lý Vi-et:
Khi đó : a.(x – x1).(x – x2)
= a.(x2 – x1.x – x2.x + x1.x2)
= a.x2 – a.x.(x1 + x2) + a.x1.x2
=
= a.x2 + bx + c (đpcm).
* Áp dụng:
a) 2x2 – 5x + 3 = 0
Có a = 2; b = -5; c = 3
⇒ a + b + c = 2 – 5 + 3 = 0
⇒ Phương trình có hai nghiệm
Vậy:
Giả sử rằng \(r=\frac{p}{q}\) là nghiệm hữu tỉ của phương trình, trong đó \(p,q\) là các số nguyên, nguyên tố cùng nhau (tức phân số \(\frac{p}{q}\) tối giản).
Ta có ngay \(ap^2+bpq+q^2c=0\to4a^2p^2+4abpq+4acq^2=0\to\left(2ap+bq\right)^2=\left(bq\right)^2-4acq^2\)
Nếu q là số chẵn thì \(ap^2\) là số chẵn và do đó p chẵn, mâu thuẫn với tính nguyên tố cùng nhau.
Nếu q là số lẻ thì \(bq,2ap+bq\) là các số lẻ. Mặt khác một số chính phương lẻ luôn chia 8 dư 1 nên ta
suy ra \(\left(2ap+bq\right)^2-\left(bq\right)^2\vdots8.\) Do đó \(4acpq\vdots8\to acpq\vdots2\to p\vdots2\). Từ phương trình đầu suy ra \(cq^2\vdots2\to q\vdots2\), vô lí.
Cách khác:
Đặt \(a=2p+1;b=2q+1;c=2r+1\left(p,q,r\in Z\right)\)
Giả sử phương trình \(ax^2+bx+c=0\) không có nghiệm hữu tỉ thì \(\Delta=b^2-4ac\) phải là số chính phương
Ta có:\(\Delta=\left(2q+1\right)^2-4\left(2r+1\right)\left(2p+1\right)\)
\(=4q^2+4q+1-\left(8r-4\right)\left(2p+1\right)\)
\(=4q^2+4q+1-\left(16pr+8r-8p-4\right)\)
\(=4q^2+4q-16pr+8r-8p+5\)
\(=8\left[\frac{q\left(q+1\right)}{2}-2pr+r-p\right]+5\equiv5\left(mod8\right)\)
vô lý vì số chính phương lẻ không thể chia 8 dư 5
=> đpcm