K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

Ta có: \(\left(a+b\right)^3\)

\(=a^3+3a^2b+3ab^2+b^3\)

\(=a^3+b^3+3ab\left(a+b\right)\)

Thay \(a^3+b^3=\left(a+b\right)^3\)

\(\Rightarrow\left(a+b\right)^3+3ab\left(a+b\right)=\left(a+b\right)^3\)

\(\Rightarrow3ab\left(a+b\right)=0\)( đpcm )

1 tháng 11 2018

     \(a^3+b^3=3ab-1\)

\(\Rightarrow a^3+b^3+1-3ab=0\)

\(\Rightarrow\left(a+b\right)^3+1-3ab\left(a+b\right)-3ab=0\)

\(\Rightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b\right)=0\)

\(\Rightarrow\left(a+b+1\right)\left(a^2-ab+b^2-a-b+1\right)=0\)

Mà \(a,b>0\Rightarrow a+b+1>0\)

\(\Rightarrow a^2-ab+b^2-a-b+1=0\)

\(\Rightarrow2a^2-2ab+2b^2-2a-2b+2=0\)

\(\Rightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\)

\(\Rightarrow a=b=1\Rightarrow a^{2018}+b^{2019}=1+1=2\)

10 tháng 10 2018

\(a^3=\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3\)

\(3ab=3\left(x+y\right)\left(x^2+y^2\right)=3\left(x^3+x^2y+xy^2+y^3\right)\)

\(2c=2x^3+2y^3\)

\(a^3-3ab+2c=\left(x^3+y^3-3x^2-3y^2+2x^3+2y^3\right)+3\left(x^2y-xy^2+xy^2-xy^2\right)=0\)

6 tháng 10 2016

quá dễ

16 tháng 8 2017

dễ thì làm coi

:-)

15 tháng 8 2018

ta co : a^3 + b^3 + 3ab.(a+b)

           = (a+b).(a^2-ab+b^2) + 3ab.(a+b)

           =(a+b).(a^2-ab+b^2+3ab)

           = (a+b).(a^2+2ab+b^2)

           =(a+b).(a+b)^2 = (a+b)^3 

11 tháng 7 2017

1) (a+b)^2

=(a+b)(a+b)

=a^2+ab+ab+b^2

=a^2+2a+b^2

2) (a-b)^2

=(a-b)(a-b)

=a^2-ab-ab+b^2

=a^2-2ab+b^2

3)(a-b)(a+b)

=a^2+ab-ab-b^2

=a^2-b^2

4) (a+b)^3

=(a+b)^2(a+b)

=(a^2+2ab+b^2)(a+b) ( chứng minh câu a)

=a^3+a^2b+2ab^2+2a^2b+ab^2+b^3

=a^3+3a^2b+3ab^2+b^3

5) (a-b)^3

=(a-b)^2(a-b)

=(a^2-2ab+b^2)(a-b) ( chứng minh câu b)

=a^3-a^2b+2ab^2-2a^2b+ab^2-b^3

=a^3-3a^2b+3ab^2-b^3

11 tháng 10 2018

a^3 - 3ab + 2c 
= (x + y)^3 - 3(x + y)(x^2 + y^2) + 2(x^3 + x^3) 
= x^3 + y^3 + 3xy(x + y) - 3(x + y)(x^2 + y^2) + 2(x^3 + y^3) 
= [x^3 + y^3 + 2(x^3 + y^3)] + [3xy(x + y) - 3(x + y)(x^2 + y^2)] 
= 3(x^3 + x^3) - 3(x + y)(x^2 - xy + y^2) 
= 3(x^3 + x^3) - 3(x^3 + y^3) 
= 0 

11 tháng 10 2018

 a^3 - 3ab + 2c

= (x + y)^3 - 3(x + y)(x^2 + y^2) + 2(x^3 + x^3)

= x^3 + y^3 + 3xy(x + y) - 3(x + y)(x^2 + y^2) + 2(x^3 + y^3)

= [x^3 + y^3 + 2(x^3 + y^3)] + [3xy(x + y) - 3(x + y)(x^2 + y^2)]

= 3(x^3 + x^3) - 3(x + y)(x^2 - xy + y^2)

= 3(x^3 + x^3) - 3(x^3 + y^3)

= 0

Ta có:\(x+y=a\)

=>\(x^2+2xy+y^2=a^2\)

=>\(x^2+y^2=a^2-2xy=a^2-2b\left(đpcm\right)\)

Ta lại có:\(x^3+3x^2y+3xy^2+y^3=a^3\)

=>\(x^3+y^3+3xy\left(x+y\right)=a^3\)

=>\(x^3+y^3=a^3-3xy\left(x+y\right)=a^3-3ab\left(đpcm\right)\)

b)\(a+b+c=0\) =>\(a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3a^2c+6abc=0\) =>\(a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\) =>\(a^3+b^3+c^3+3\left(-a\right)\left(-b\right)\left(-c\right)=0\) =>\(a^3+b^3+c^3=3abc\left(đpcm\right)\)

10 tháng 9 2017

Tại sao lại có +6abc vậy bạn , ở câu b) đó hiuhiu