Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì a2 và b2 là 2 SCP nên chúng là STN
thử các trường hợp chỉ có 1 và 1 thỏa mãn => a và b đều = 1
=> a + b < 2(a + b)3 vì 2 < 16 (đpcm)
Có : \(a^2+b^2\le2\) \(\left(1\right)\)
Áp dụng bất đẳng thức AM - GM ta được :
\(a^2+b^2\ge2ab\)
\(\Rightarrow2ab\le a^2+b^{2^{ }}\le2\) \(\left(2\right)\)
Cộng \(\left(1\right)\) và \(\)\(\left(2\right)\) :
\(a^2+2ab+b^2\le4\)
\(\Rightarrow\left(a+b\right)^2\le4\)
\(\Rightarrow-2\le a+b\le2\)
Áp dụng bất đẳng thức Bunhiacopxki ta có:
\(\left(a+b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)\)
\(\Leftrightarrow\)\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow\)\(\left(a+b\right)^2\le2.2=4\) (do \(a^2+b^2\le2\))
\(\Leftrightarrow\)\(a+b\le\sqrt{4}=2\) (đpcm)
p/s: tham khảo ạ. mk ko giám đảm bảo
dự đoán của chúa Pain a=b=c=1
ta có \(ab^2\le\frac{\left(a+B^2\right)^2}{4}:bc^2\le\frac{\left(b+c^2\right)^2}{4}:ca^2\le\frac{\left(c+a^2\right)^2}{4}.\)
\(ab^2+bc^2+ca^2\le\frac{\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ac+c^2\right)}{4}\)
\(ab^2+bc^2+ca^2\le\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{1}{2}\left(ab+bc+ca\right)\)
ta có \(xy+yz+zx\le x^2+y^2+z^2\left(cosi\right)\Leftrightarrow ab+bc+ca\le a^2+b^2+c^2=3\)luôn đúng
thay số ta được \(ab^2+bc^2+ca^2\le\frac{3}{2}+\frac{3}{2}=3\)
\(ab^2+bc^2+ca^2-abc\le3-abc\)
có \(abc\ge\frac{\left(a+b+c\right)^3}{27}..."-abc"\ge\rightarrow\le\) ( -abc dấu > thành dấu < cùng dấu thay vào được )
\(ab^2+bc^2+ca^2-abc\le3-\frac{\left(a+b+C\right)^3}{27}\)
ta có \(a^2+1\ge2a\left(cosi\right)\)
\(b^2+1\ge2b\)
\(c^2+1\ge2c\)
\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
có (a^2+b^2+c^2)=3 (gt) \(\Rightarrow3+3\ge2\left(a+b+C\right)\Rightarrow3\ge a+b+C\Rightarrow-3\le-\left(a+b+c\right)\)
cùng dấu < thay vào ta được
\(ab^2+bc^2+ca^2-abc\le3-\frac{\left(3\right)^3}{27}=3-1=2\)
\(\Rightarrow ab^2+bc^2+ca^2-abc\le2\)
cho chúa Pain xin cái tính :)
Áp dụng bất đẳng thức Cauchy ta có :
\(a^2+b^2\ge2\left|ab\right|\)
\(\Rightarrow\left|ab\right|\le1\)
\(\Leftrightarrow-1\le\left|ab\right|\le1\)
Ta có : \(a^2+b^2=\left(a+b\right)^2-2ab\)
\(\Rightarrow\left(a+b\right)^2\le2+2ab\le4\)
\(\Rightarrow a+b\le2\)