Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(5\left(a+b\right)^2+ab\)chia hết cho 441 = 212 nên
\(4\left(5\left(a+b\right)^2+ab\right)=20\left(a+b\right)^2+4ab\)chia hết cho 212
Ta lại có
\(20\left(a+b\right)^2+4ab=20\left(a+b\right)^2+\left(a+b\right)^2-\left(a-b\right)^2\)
\(=21\left(a+b\right)^2-\left(a-b\right)^2\)
Vì 21(a+b)2 chia hết cho 21 nên (a - b)2 chia hết cho 21
Ta thấy rằng 21 = 3.7 (3,7 là hai số nguyên tố)
Nên (a - b)2 chia hết cho 3 và 7
=> (a - b) chia hết cho 3 và 7 (vì 3, 7 là số nguyên tố)
=> (a - b) chia hết cho 21
=> (a - b)2 chia hết cho 212
Kết hợp với \(21\left(a+b\right)^2-\left(a-b\right)^2\)chia hết cho 212
=> 21(a + b)2 chia hết cho 212
=> (a + b) chia hết cho 21
Chứng minh tương tự ta se suy ra được (a + b)2 chia hết cho 212
=> 5(a + b)2 chia hết cho 212
=> ab chia hết cho 212 = 441
B2:Áp dụng cô si ta có:\(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)
Ta có \(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+4\left(1\right)\)
Từ \(\left(1\right)\)suy ra BĐT tương đương với \(a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}\ge\frac{17}{2}\)
Ta có \(a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}=\left(a+b\right)^2-2ab+\frac{\left(a+b\right)^2-2ab}{a^2b^2}\)Mà \(ab\le\frac{1}{4}\)
Nên \(\hept{\begin{cases}\left(a+b\right)^2-2ab=1-2.\frac{1}{4}=\frac{1}{2}\left(2\right)\\\frac{\left(a+b\right)^2-2ab}{a^2b^2}\ge\frac{\frac{1}{2}}{\frac{1}{16}}=8\left(3\right)\end{cases}}\)
Cộng \(\left(2\right)vs\left(3\right)\)lại ta thu được \(đpcm\)
Dấu \(=\)xảy ra khi \(a=b=\frac{1}{2}\)
Sửa để: CM: \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\) Điều kiện \(a;b\ne c\) \(a+b\ne c\)
\(\frac{c^2}{2}+ab-ac-bc=0\)
\(\Leftrightarrow c^2+2ab-2ac-2bc=0\)
\(\Leftrightarrow c^2=2c^2+2ab-2ac-2bc\)
\(\Leftrightarrow c^2=2\left(a-c\right)\left(b-c\right)\)
Lại có: \(a^2+\left(a-c\right)^2\)
\(=2a^2-2ac+c^2\)
\(=2a\left(a-c\right)+2\left(a-c\right)\left(b-c\right)\)
\(=2\left(a-c\right)\left(a+b-c\right)\)
Tương tự: \(b^2+\left(b-c\right)^2=2\left(b-c\right)\left(a+b-c\right)\)
Thay vô ta có:
\(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{2\left(a-c\right)\left(a+b-c\right)}{2\left(b-c\right)\left(a+b-c\right)}=\frac{a-c}{b-c}\)
Cảm ơn bạn ạ, giáo viên ghi sai đề nên mình giải mãi không ra