Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử a ^ 3 + b ^ 3 + c ^ 3 chia hết cho 9 (1). Giả sử a, b, c đều không chia hết cho 3 mỗi số có dạng BS * 9 plus/minus 1 do đó a ^ 3 + b ^ 3 + c ^ 3 =B S9+r 1 +r 2 +r 3 , trong đó r_{1} r_{2} r_{3} \in \{1; - 1\} Không có cách chọn ba số r_{1} r_{2} r_{3} nào để tổng chia hết cho Vậy tồn tại một trong ba số a, b, c là bội của 3.
Ta có: a+5b chia hết cho 7
=>10(a+5b) chia hết cho 7
=>10a+50b chia hết cho 7
=>10a+b+49b chia hết cho 7
=>(10a+b+49b)-49b chia hết cho 7( vì số chia hết cho 7-một số chia hết cho 7 bằng 1 số chia hết cho 7)
=>10a+b chia hết cho 7
- 76+75-74 chia het cho 55
Đặt A = 76+75-74
=> A = 74.( 72 + 7 - 1 )
=> A = 74 . ( 49 + 6 )
=> A = 74 . 55
=> A chia hết cho 55
Đặt B = 817 + 279 - 9 ( Phần này hơi khó nhưng mình làm giùm bạn theo cách MOD )
Gọi I = 817
Ta có : 405 = 81 . 5
vì 817 đồng dư với 0 ( Mod 81) => I chia hết cho 81 => I = 81k ( k\(\ne\)0) (1)
Vì 81 đồng dư với 1 ( Mod 5 ) => 817 đồng dư với 17 đồng dư với 1 (Mod 5 )
=> I - 1 chia hết cho 5 ( 2 )
Mà I = 81k (theo 1)
=> I - 1 = 81k -1 ( 3 )
=> I - 1 = 80k + k - 1
Mà I - 1 Chia hết cho 5 ( theo 2 ) , 80k chia hết cho 5
=> k - 1 chia hết cho 5
Đặt k = 5q + 1
Thay vào Biểu Thức 3 ta có :
I - 1 = 81 (5q + 1) - 1
=> I = 405q + 81
=> I chia cho 405 dư 81
Gọi 279 là H
Ta có :
279 đồng dư với 0 (Mod 81)
=> H chia Hết 81 => H = 81k ( k\(\ne\)0)
Vì 279 = 327
Mà 34 đồng dư với 1 theo (mod 5)
327 = 324 . 27 mà 324 đồng dư với 1 (mod 5) ; 27 chia 5 dư 2
=> 327 đồng dư với 1 . 2 = 2 (mod 5 )
=> H - 2 chia hết cho 5
vì H = 81k
=> H - 2 = 81k - 2
=> H - 2 = 80k + k - 2
Vì H - 2 chia hết cho 5 ; 80k chia hết cho 5
=> k - 2 chia hết cho 5
Đặt k = 5q + 2
Thay vào Ta có :
H = 81 ( 5q + 2 )
=> H = 405q + 162
=> H chia 405 dư 162
Ta có :
I + H - 9 đồng dư với 81 + 162 - 9 = 234
Như vậy 817 +279-9 không chia hết cho 405
hay nói cách khác là bài toán bị sai
A = 776 + 775 + 774
= 774(72 + 7 + 1)
= 774(49 + 7 + 1)
= 774 . 57
Vậy A chia hết cho 57
\(A=7^{76}+7^{75}+7^{74}=7^{74}\cdot7^2+7^{74}\cdot7+7^{74}=7^{74}\left(7^2+7+1\right)=57\cdot7^{74}⋮57\)
Gọi số đó là ab
ta có ab = a.10 + b = 3a + 7b + b
vì 7b chia hết cho 7 => để 3a + 7a + b chia hêt cho 7
=> 3a + b chia hêt cho 7
=> 3a + b + 14b chia hêt cho 7
=> 3a + 15b chia hêt cho 7
=> 3 ( a + 5b ) chia hêt cho 7
mà 3 ko chia hêt cho 7 => a + 5b chia hêt cho 7 ( đpcm )
Gọi số đó là ab (không phải là a.b đâu, đành phải chuyển dấu nhân thành dấu x)
\(ab=a\times10+b=7a+3a+b⋮7\)
\(\Leftrightarrow3a+b⋮7\)
\(\Leftrightarrow3a+b+14b⋮7\)
\(\Leftrightarrow3a+15b⋮7\)
\(\Leftrightarrow3\left(a+5b\right)⋮7\left(1\right)\)
Vì UCLN(3;7) = 1
\(\Rightarrow\left(1\right)\Leftrightarrow a+5b⋮7\)
XONG RỒI ĐÓ BẠN.
de dang chung ming a^6 chia het cho 7
de dang chung minh