Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐCM vãi cả Please sigh
\(a^2+ab+b^2=c^2+cd+d^2\)
\(\Leftrightarrow\left(a+b\right)^2-ab=\left(c+d\right)^2-cd\)
\(\Leftrightarrow\left(a+b\right)^2-\left(c+d\right)^2=ab-cd\)
\(\Leftrightarrow\left(a+b-c-d\right)\left(a+b+c+d\right)=ab-cd\)
Giả sử a+b+c+d là số nguyên tố
Đặt \(a+b+c+d=p\Rightarrow a+b+c\equiv-d\left(modp\right)\)
Mặt khác:
\(ab-cd\equiv0\left(modp\right)\Rightarrow ab+c\left(a+b+c\right)\equiv0\left(modp\right)\Rightarrow\left(a+c\right)\left(b+c\right)\equiv0\left(modp\right)\)
\(\Rightarrow a+c\equiv b+c\equiv0\left(modp\right)\) ( vô lý nha )
Vậy a+b+c+d là hợp số,nhớ trước có sol khá ngắn mà quên mất tiêu
ta có a+ b = c + d
=> b.(a+b) = b(c+d) => a.b + b2 = bc + bd mà ab = cd + 1 nên
cd + 1 + b2 = bc + bd => bc - cd + bd - b2 = 1 => c(b - d) + b.(d - b) = 1 => (c - b)(b - d) = 1 . Vì a, b, c, d nguyên nên c - b và b - d cũng nguyên. do đó c - b = b - d = 1 hoặc c - b = b -d = -1
c - b = b - d => c + d = 2.b Mà c + d = a+ b => 2.b = a+ b => b = a => đpcm
Từ a+b = c+d => a=c+d-b Từ 2 điều này => (c+d-b).b+1=cd
Mà ab+1=cd cb+db-\(b^2\)+1=cd
=> cb+db-\(b^2\)-cd=-1
Hay \(b^2\)-cd-cb-db=1
=> ( \(b^2\)-cb)-(db-cd)=1
=> b(b-c)-d(b-c)=1
=> (b-c).(b-d)=1
Vì a,b,c,d \(\in\) Z => \(\left\{{}\begin{matrix}b-c\in Z\\b-d\in Z\end{matrix}\right.\)
=> b-c=b-d=1
Hoặc b-c=b-d=-1
=> c=d hoặc d=c
Vậy c=d(ĐPCM)
a) Tập hợp; nằm giữa A và B.
b) Một; dương
c) Độ dài của chúng
d) Hai đoạn thẳng AB và CD bằng nhau hay có cùng độ dài
e) AB < CD
f) Đoạn thẳng AB dài hơn (lớn hơn) đoạn thẳng CD.
ta có :\(\left(a+c\right)\left(b-d\right)=ab-cd\)
\(\Leftrightarrow ab-ad+cb-cd=ab-cd\)
\(\Leftrightarrow cb-ad=0\)
vì a ;b;c;d là số tự nhiên nên
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)
từ đó suy ra đpcm