Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(4\left(m+n\right)^2-mn⋮15^2\Rightarrow4\left(4\left(m+n\right)^2-mn\right)⋮15^2\)
\(\Rightarrow16\left(m+n\right)^2-4mn⋮15^2\Rightarrow15\left(m+n\right)^2+\left(m-n\right)^2⋮15^2\Rightarrow15\left(m+n\right)^2+\left(m-n\right)^2⋮15\)
Mà \(15\left(m+n\right)^2⋮15\Rightarrow\left(m-n\right)^2⋮15\Rightarrow\left\{{}\begin{matrix}\left(m-n\right)^2⋮3\\\left(m-n\right)^2⋮5\end{matrix}\right.\)
Do 3 và 5 là số nguyên tố \(\Rightarrow\left\{{}\begin{matrix}m-n⋮3\\m-n⋮5\end{matrix}\right.\) \(\Rightarrow m-n⋮15\Rightarrow\left(m-n\right)^2⋮15^2\)
\(\Rightarrow15\left(m+n\right)^2⋮15^2\Rightarrow\left(m+n\right)^2⋮15\Rightarrow\left\{{}\begin{matrix}\left(m+n\right)^2⋮3\\\left(m+n\right)^2⋮5\end{matrix}\right.\)
Mà 3; 5 là số nguyên tố \(\Rightarrow\left\{{}\begin{matrix}m+n⋮3\\m+n⋮5\end{matrix}\right.\) \(\Rightarrow m+n⋮15\Rightarrow\left(m+n\right)^2⋮15^2\)
Áp dụng kết quả này vào điều kiện ban đầu: \(4\left(m+n\right)^2-mn⋮15^2\) , mà ta \(\left(m+n\right)^2⋮15^2\) \(\Rightarrow mn⋮15^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Do \(5\left(a+b\right)^2+ab\)chia hết cho 441 = 212 nên
\(4\left(5\left(a+b\right)^2+ab\right)=20\left(a+b\right)^2+4ab\)chia hết cho 212
Ta lại có
\(20\left(a+b\right)^2+4ab=20\left(a+b\right)^2+\left(a+b\right)^2-\left(a-b\right)^2\)
\(=21\left(a+b\right)^2-\left(a-b\right)^2\)
Vì 21(a+b)2 chia hết cho 21 nên (a - b)2 chia hết cho 21
Ta thấy rằng 21 = 3.7 (3,7 là hai số nguyên tố)
Nên (a - b)2 chia hết cho 3 và 7
=> (a - b) chia hết cho 3 và 7 (vì 3, 7 là số nguyên tố)
=> (a - b) chia hết cho 21
=> (a - b)2 chia hết cho 212
Kết hợp với \(21\left(a+b\right)^2-\left(a-b\right)^2\)chia hết cho 212
=> 21(a + b)2 chia hết cho 212
=> (a + b) chia hết cho 21
Chứng minh tương tự ta se suy ra được (a + b)2 chia hết cho 212
=> 5(a + b)2 chia hết cho 212
=> ab chia hết cho 212 = 441
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Để hàm số này là hàm bậc nhất thì
\(\hept{\begin{cases}\left(3n-1\right)\left(2m+3\right)=0\\4m+3\ne0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=\frac{1}{3}\\m=\frac{-3}{2}\end{cases}}\)
Các câu còn lại làm tương tự nhé bạn
![](https://rs.olm.vn/images/avt/0.png?1311)
Vũ Minh Tuấn, Băng Băng 2k6, Nguyễn Thành Trương, buithianhtho, Akai Haruma, No choice teen, Bùi Thị Vân,
HISINOMA KINIMADO, Nguyễn Thanh Hằng, Nguyễn Ngô Minh Trí, @Nguyễn Việt Lâm, @Nguyễn Thị Ngọc Thơ
mn giúp em với ạ! Cảm ơn nhiều !
![](https://rs.olm.vn/images/avt/0.png?1311)
có: x+y+z=2=>(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+xz)=4
mà x^2+y^2+z^2=2 =>2(xy+yz+xz)=2
=>xy+yz+xz=1
xét:1+y^2=xy+yz+xz+y^2=(x+y)(z+y)
tương tự :1+z^2=xy+yz+xz+z^2=(x+z)(y+z)
1+x^2=xy+yz+xz+x^2=(x+z)(x+y)
thay vào M ta có :M=\(\sqrt{\frac{\left(x+y\right)\left(z+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+z\right)\left(x+y\right)}}=\sqrt{\left(y+z\right)^2}\)=/y+z/
Mà x,y,z,\(\in\)Q=>đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
?Amanda?, Phạm Lan Hương, Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Nguyễn Ngọc Lộc , @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @Trần Thanh Phương
giúp e với ạ! Cần trước 5h chiều nay! Cảm ơn mn nhiều!
Tranh thủ làm 1, 2 bài rồi ăn cơm:
1/ Đặt \(m=n-2008>0\)
\(\Rightarrow2^{2008}\left(369+2^m\right)\) là số chính phương
\(\Rightarrow369+2^m\) là số chính phương
m lẻ thì số trên chia 3 dư 2 nên ko là số chính phương
\(\Rightarrow m=2k\Rightarrow369=x^2-\left(2^k\right)^2=\left(x-2^k\right)\left(x+2^k\right)\)
b/
\(2\left(a^2+b^2\right)\left(a+b-2\right)=a^4+b^4\) \(\left(a+b>2\right)\)
\(\Rightarrow2\left(a^2+b^2\right)\left(a+b-2\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)
\(\Rightarrow a^2+b^2\le4\left(a+b-2\right)\)
\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2\le0\Rightarrow a=b=2\)
\(\Rightarrow x=y=4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(x+y+z=1\) nên:
\(\Rightarrow y+z=1-x\)
Thay \(y+z=1-x\) và áp dụng BĐT \(\left(a+b\right)^2\ge4ab\) ta được:
\(4\left(1-x\right)\left(1-y\right)\left(1-z\right)=4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le\left[\left(y+z\right)+\left(1-z\right)\right]^2\left(1-y\right)\)
\(\Rightarrow4\left(y+z\right)\left(1-y\right)\left(1-z\right)\le\left(1+y\right)^2\left(1-y\right)=\left(1+y\right)\left(1-y^2\right)\le1+y\)
\(\Rightarrow4\left(1-x\right)\left(1-y\right)\left(1-z\right)\le1+y=x+2y+z\left(đpcm\right)\)