Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta dựa vào nhận xét sau đây: Nếu \(p\) là số nguyên tố và \(p=ab\) với a,b là các số nguyên dương thì a=1 hoặc b=1. Ta có
\(A=n^4+4\cdot2^{4k}=\left(n^2\right)^2+2\cdot n^2\cdot2^{2k+1}+\left(2^{2k+1}\right)^2-2^{2k+2}\cdot n^2\)
\(=\left(n^2+2^{2k+1}\right)^2-\left(2^{k+1}\cdot n\right)^2=\left(n^2+2^{2k+1}-2^{k+1}\cdot n\right)\left(n^2+2^{2k+1}+2^{k+1}n\right).\)
Vì A là số nguyên tố và \(n^2+2^{2k+1}-2^{k+1}\cdot n<\)\(n^2+2^{2k+1}+2^{k+1}\cdot n\). Suy ra \(n^2+2^{2k+1}-2^{k+1}\cdot n=1\). Suy ra \(\left(n-2^k\right)^2+2^{2k}=1\to n=2^k,2^{2k}=1\to k=0,n=1.\) Khi đó A=1+4=5 là số nguyên tố.
Để A = n4 + 42k+1 là số nguyên tố <=> ƯC ( n4 ; 42k+1 ) = 1
=> n4 và 42k+1 chỉ có 1 ước nguyên dương
=> ( 4 + 1 )( 2k + 1 + 1 ) = 1
=> 5.( 2k + 2 ) = 1 => 10k + 10 = 1
=> 10k = - 9 => k = - 9/10
Theo đề , n và k là số tự nhiên
=> n ; k ∈ ∅
đăng 1 cái là ok rồi đăng j lắm thế
Gợi ý: Áp dụng hằng đẳng thức a4+4b4=a4+4a2b2-(2ab)2=(a^2+2b^2-2ab)(a^2+2b^2+2ab)
thấy n^4+4^2k+1=n^4+4(2^k)^4 áp dụng hằng đẳng thức trên là xong
mà trong câu hỏi tương tự cũng có đó mặc dù ko có lời giải
Câu 1. Đề sai nhé, vẽ đường thẳng qua A và M là trung điểm BC. Khi đó AM cắt đoạn AB,AC ở A và cắt đoạn BC ở trung điểm M.
Câu 2. Giả sử d là ước chung lớn nhất của a+b,ab. Suy ra \(a^2+ab\vdots d\to a^2\vdots d.\) Tương tự \(b^2\vdots d\). Nếu \(d>1\) thì lấy \(p\) là ước nguyên tố bất kì của d. Ta suy ra \(a^2,b^2\vdots p\to a,b\vdots p\to UCLN\left(a,b\right)>1\to\) mâu thuẫn.
Lời giải:
Ta thấy $a,a+k$ đều là số nguyên tố lớn hơn $3$ nên chúng đều lẻ.
Do đó: \((a+k)-a\) chẵn hay $k$ chẵn. Vậy \(k\vdots 2(1)\)
Số nguyên tố lớn hơn 3 thì chia 3 dư $1$ hoặc $2$. Mà có 3 số ($a,a+k,a+2k$) nên theo nguyên lý Dirichlet tồn tại ít nhất \(\left[\frac{3}{2}\right]+1=2\) số cùng số dư khi chia $3$. Giả sử $a,a+k$ cùng số dư khi chia cho $3$
Khi đó: \((a+k)-a\vdots 3\Leftrightarrow k\vdots 3(2)\)
Từ $(1),(2)$ kết hợp với $(2,3)=1$ suy ra \(k\vdots 6\)
Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn (tức là k chia hết cho 2).
Tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3. (vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3; nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2; nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).
Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6.