Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (n + 2) chia hết cho (n - 1). \(\left(n\in N\right)\)
\(\Rightarrow\) n - 2 + 4 chia hết cho n - 1
\(\Rightarrow\) 4 chia hết cho n - 1
\(\Rightarrow\) n - 1 \(\in\) Ư(4) = {1; 2; 4;}
\(\Rightarrow\) n \(\in\) {2; 3; 5}
b) (2n + 7) chia hết cho (n + 1). \(\left(n\in N\right)\)
\(\Rightarrow\) 2n + 2 + 5 chia hết cho n + 1
\(\Rightarrow\) 2(n + 1) + 5 chia hết cho n + 1
\(\Rightarrow\) 5 chia hết cho n + 1
\(\Rightarrow\) n + 1 \(\in\) Ư(5) = {1; 5;}
\(\Rightarrow\) n \(\in\) {0; 4}
c) (2n + 1) chia hết cho (6 - n). \(\left(n\in N\right)\)
\(\Rightarrow\) (12 - 2n) - (12 - n) + (2n + 1) chia hết cho 6 - n
\(\Rightarrow\) 2(6 - n) - 12 + n + 2n + 1 chia hết cho 6 - n
\(\Rightarrow\) -12 + 3n + 1 chia hết cho 6 - n
\(\Rightarrow\) 18 - 3n - 12 + 1 chia hết cho 6 - n
\(\Rightarrow\) 3(6 - n) - 12 + 1 chia hết cho 6 - n
\(\Rightarrow\) -11 chia hết cho 6 - n
\(\Rightarrow\) 6 - n \(\in\) Ư(-11) = {-1; 1; -11; 11}
\(\Rightarrow\) Không có số tự nhiên n thỏa mãn
d) 3n chia hết cho (5 - 2n) \(\left(n\in N\right)\)
\(\Rightarrow\) 3n chia hết cho 5 - n - n
\(\Rightarrow\) 15 - 4n - 4n chia hết cho 5 - n - n
\(\Rightarrow\) 3(5 - n - n) chia hết cho 5 - n - n
KL: Theo đề bài, ta có \(\left(n\in N\right)\) sao cho 3n chia hết cho (5 - 2n) và 2n < 5
\(\Rightarrow\) n \(\in\) {0; 1; 2}
e) (4n + 3) chia hết cho (2n + 6) \(\left(n\in N\right)\)
\(\Rightarrow\) (2n + 6) + (2n + 6) - 9 chia hết cho 2n + 6
\(\Rightarrow\) 2(2n + 6) - 9 chia hết cho 2n + 6
\(\Rightarrow\) - 9 chia hết cho 2n + 6
\(\Rightarrow\) 2n + 6 \(\in\) Ư(-9) = {-1; 1; -3; 3; -9; 9}
\(\Rightarrow\) Không có số tự nhiên n thỏa mãn
a) (n + 2) chia hết cho (n - 1). \(\left(n\in N\right)\)
\(\Rightarrow\) n - 2 + 4 chia hết cho n - 1
\(\Rightarrow\) 4 chia hết cho n - 1
\(\Rightarrow\) n - 1 \(\in\) Ư(4) = {1; 2; 4;}
\(\Rightarrow\) n \(\in\) {2; 3; 5}
b) (2n + 7) chia hết cho (n + 1). \(\left(n\in N\right)\)
\(\Rightarrow\) 2n + 2 + 5 chia hết cho n + 1
\(\Rightarrow\) 2(n + 1) + 5 chia hết cho n + 1
\(\Rightarrow\) 5 chia hết cho n + 1
\(\Rightarrow\) n + 1 \(\in\) Ư(5) = {1; 5;}
\(\Rightarrow\) n \(\in\) {0; 4}
c) (2n + 1) chia hết cho (6 - n). \(\left(n\in N\right)\)
\(\Rightarrow\) (12 - 2n) - (12 - n) + (2n + 1) chia hết cho 6 - n
\(\Rightarrow\) 2(6 - n) - 12 + n + 2n + 1 chia hết cho 6 - n
\(\Rightarrow\) -12 + 3n + 1 chia hết cho 6 - n
\(\Rightarrow\) 18 - 3n - 12 + 1 chia hết cho 6 - n
\(\Rightarrow\) 3(6 - n) - 12 + 1 chia hết cho 6 - n
\(\Rightarrow\) -11 chia hết cho 6 - n
\(\Rightarrow\) 6 - n \(\in\) Ư(-11) = {-1; 1; -11; 11}
\(\Rightarrow\) Không có số tự nhiên n thỏa mãn
d) 3n chia hết cho (5 - 2n) \(\left(n\in N\right)\)
\(\Rightarrow\) 3n chia hết cho 5 - n - n
\(\Rightarrow\) 15 - 4n - 4n chia hết cho 5 - n - n
\(\Rightarrow\) 3(5 - n - n) chia hết cho 5 - n - n
KL: Theo đề bài, ta có \(\left(n\in N\right)\) sao cho 3n chia hết cho (5 - 2n) và 2n < 5
\(\Rightarrow\) n \(\in\) {0; 1; 2}
e) (4n + 3) chia hết cho (2n + 6) \(\left(n\in N\right)\)
\(\Rightarrow\) (2n + 6) + (2n + 6) - 9 chia hết cho 2n + 6
\(\Rightarrow\) 2(2n + 6) - 9 chia hết cho 2n + 6
\(\Rightarrow\) - 9 chia hết cho 2n + 6
\(\Rightarrow\) 2n + 6 \(\in\) Ư(-9) = {-1; 1; -3; 3; -9; 9}
\(\Rightarrow\) Không có số tự nhiên n thỏa mãn
Ta có :
\(\frac{3n+4}{n-1}=\frac{3n-3}{n-1}+\frac{7}{n-1}=3+\frac{7}{n-1}\) nguyên
<=> n - 1 \(\in\) Ư(7) = {-7; -1; 1; 7}
<=> n \(\in\) {-6; 0; 2; 8}
Vì 2n luôn là số chẵn nên nếu n là số lẻ thì trong hai số a + n và a + 2n sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy n phải là số chẵn (tức là n chia hết cho 2).
Lý luận tương tự, n phải chia hết cho 3, vì nếu n chia 3 dư 1 hoặc 2 thì 2n chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +n, a +2n khi chia cho 3 chắc chắn có 1 số chia hết cho 3
(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3;
nếu a chia 3 dư 1 thì a + n hoặc a + 2n phải có 1 số chia hết cho 3 vì trong 2 số n và 2n có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2
nếu a chia 3 dư 2 thì a + n và a + 2n phải có 1 số chia hết cho 3 vì trong 2 số n và 2n có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).
Vậy k chia hết cho 2 và cho 3 => n chia hết cho 6.
Vì 2n luôn là số chẵn nên nếu n là số lẻ thì trong hai số a + n và a + 2n sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy n phải là số chẵn (tức là n chia hết cho 2).
Lý luận tương tự, n phải chia hết cho 3, vì nếu n chia 3 dư 1 hoặc 2 thì 2n chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +n, a +2n khi chia cho 3 chắc chắn có 1 số chia hết cho 3
(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3;
nếu a chia 3 dư 1 thì a + n hoặc a + 2n phải có 1 số chia hết cho 3 vì trong 2 số n và 2n có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2
nếu a chia 3 dư 2 thì a + n và a + 2n phải có 1 số chia hết cho 3 vì trong 2 số n và 2n có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).
Vậy k chia hết cho 2 và cho 3 => n chia hết cho 6.
gọi số thứ nhất là a ( a # 0)
=> số thứ 2 = 8010/a
do nếu giữ nguyên số thứ nhất và tăng số thứ 2 lên 8 đơn vị thì đk tích mới là 9434 nên ta có phương trình:
a x ( 8010/a + 8 ) - a x8010/a = 9434 - 8010
<=> 8010 +8a -8010 =1424
<=> a = 1424 /8
<=> a =178 (thõa mãn)
=> số thứ 2 là 8010 :178 =45
vậy 2 số cần tìm là 45 ; 178
a) 4n-5=4n+8-13=4(n+2)-13 chia hết cho 13 khi và chỉ khi n+2 chia hết cho 13. Điều này có nghĩa là n=13k-2.
b) 5n+1=5n-20+21=5(n-4)+21 chia hết cho 7 khi và chỉ khi n-4 chia hết cho 7. Điều này có nghĩa là n=7k+4
c) 25n+3=25n-50+53=25(n-2)+53 chia hết cho 53 khi và chỉ khi n-2 chia hết cho 53. Điều này có nghĩa là n=53k+2
do m ;m+k ; m+2k là số nguyên tố >3
=> m;m+k;m+2k lẻ
=> 2m+k chẵn =>k⋮⋮ 2
mặt khác m là số nguyên tố >3
=> m có dạng 3p+1 và 3p+2(p∈∈ N*)
xét m=3p+1
ta lại có k có dạng 3a ;3a+1;3a+2(a∈∈ N*)
với k=3a+1 ta có 3p+1+2(3a+1)=3(p+1+3a) loại vì m+2k là hợp số
với k=3a+2 => m+k= 3(p+a+1) loại
=> k=3a
tương tự với 3p+2
=> k=3a
=> k⋮⋮3
mà (3;2)=1
=> k⋮⋮6