K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 12 2018

Lời giải:
\(x+y+z=2018; \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2018}\)

\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow \frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow \frac{x+y}{xy}+\frac{x+y}{z(x+y+z)}=0\)

\(\Leftrightarrow (x+y)\left[\frac{1}{xy}+\frac{1}{z(x+y+z)}\right]=0\)

\(\Leftrightarrow (x+y).\frac{z(x+y+z)+xy}{xyz(x+y+z)}=0\)

\(\Leftrightarrow (x+y).\frac{(z+x)(z+y)}{xyz(x+y+z)}=0\)

\(\Leftrightarrow (x+y)(y+z)(x+z)=0\)

\(\Rightarrow \left[\begin{matrix} x+y=0\\ y+z=0\\ z+x=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x+y+z=z\\ x+y+z=x\\ x+y+z=y\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} 2018=z\\ 2018=x\\ 2018=y\end{matrix}\right.\)

Tức là trong ba số $x,y,z$ phải có ít nhất một số bằng $2018$

24 tháng 7 2018

Ta có: x^2 + y^2 +z^2 +1/x^2 +1/y^2 +1/z^2 =6

          (x^2 -2 + 1/x^2) +(y^2 -2 +1/y^2) +(z^2 -2 +1/z^2) = 0

          (x -1/x)^2 +(y-1/y)^2 +(z-1/z)^2 = 0

Suy ra: x- 1/x = 0 ,y- 1/y = 0 và z- 1/z = 0

            x^2 -1/ x= 0,y^2 -1/ y=0 và z^2-1 /z =0

            x^2 -1=0,y^2-1=0 và z^2-1=0

            x^2 = 1.y^2 =1 và z^2 =1

Do đó: x^2018 = y^2018 =z^2018 =1

Vậy A =x^2018 +y^2018 +z^2018 =3           

23 tháng 1 2018

Ta co : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

=> \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x+y+z}-\dfrac{1}{z}\)

=> \(\dfrac{x+y}{xy}=\dfrac{-x-y}{z\left(x+y+z\right)}\)

=> \(\left(x+y\right)\left(x+y+z\right)z+\left(x+y\right)xy=0\)

=> (x+y)(xz+zy+z2+xy)=0

=> (x+y)(x+z)(y+z)=0

=> x+y=0 hoac x+z=0 hoac y+z=0 , do x+y+z=2018

=> z=2018 hoac y=2018 hoac z=2018

=> DPCM

13 tháng 5 2018

Hỏi đáp Toán

13 tháng 5 2018

các bạn giải hộ mik vs khó quá

27 tháng 12 2017

đề bài có sai k bạn , 

giả sử x và y đối nhau , thì từ (1) => z=2018 ; từ (2) => z=1/2018 ....?

23 tháng 1 2018

đề đúng nhưng ko giải đc

5 tháng 5 2019

Sử dụng bất đẳng thức: 

\(x^3+y^3\ge3xy\left(x+y\right)\)

Có: \(M=2018\left(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\right)\)

\(M\le2018\left(\frac{xyz}{xy\left(x+y\right)+xyz}+\frac{xyz}{yz\left(y+z\right)+xyz}+\frac{xyz}{xz\left(x+z\right)+xyz}\right)\)

\(M\le2018\left(\frac{xyz}{xy\left(x+y+z\right)}+\frac{xyz}{yz\left(x+y+z\right)}+\frac{xyz}{xz\left(x+y+z\right)}\right)\)

\(M\le2018\left(\frac{x+y+z}{x+y+z}\right)=2018\)

Vậy Max M=2018 khi x=y=z=1

5 tháng 5 2019

Sửa lại \(x^3+y^3\ge xy\left(x+y\right)\)

Xin lỗi

16 tháng 3 2018

\(x+y+z=2018\)\(\Rightarrow\)\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2018}=\dfrac{1}{x+y+z}\)

\(\Leftrightarrow\dfrac{xy+yz+zx}{xyz}=\dfrac{1}{x+y+z}\)

\(\Leftrightarrow\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\\ \Leftrightarrow x^2y+xy^2+xyz+xyz+y^2z+\\ yz^2+zx^2+xyz+z^2x-xyz=0\)

\(\Leftrightarrow x^2y+xy^2+xyz+xyz+\\ y^2z+yz^2+zx^2+z^2x=0\)

\(\Leftrightarrow xy\left(x+y\right)+yz\left(x+y\right)+xz\left(x+y\right)+z^2\left(x+y\right)=0\\ \Leftrightarrow\left(x+y\right)\left(xy+yz+xz+z^2\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y\left(x+z\right)+z\left(x+z\right)\right)=0\\ \Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

suy ra x+y=0 hoặc y+z=0 hoặc x+z=0

hay x=-y hoặc y=-z hoặc x=-z

thay vào D ta tính dc kq