Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(n^2-9)(n^2-1)
=(n-3)(n+3)(n-1)(n+1)
=(2k+1-3)(2k+1+3)(2k+1-1)(2k+1+1)
=2k(2k+2)(2k-2)(2k+4)
=16k(k+1)(k-1)(k+2)
Vì k;k+1;k-1;k+2là 4 số liên tiếp
nen k(k-1)(k+1)(k+2) chia hết cho 4!=24
=>A chia hết cho 384
\(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{a+b+c}\)\(\Leftrightarrow\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)^3=a+b+c\Leftrightarrow a+b+c+3.\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\sqrt[3]{c}+\sqrt[3]{a}\right)=a+b+c\)
\(\Rightarrow\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\sqrt[3]{c}+\sqrt[3]{a}\right)=0\)
Ta CM : A= \(6n^5+15n^4+10n^3-n\) chia hết cho 30
+A = \(\left(6n^5+15n^4+9n^3\right)+\left(n^3-n\right)\)= \(\left(6n^5+15n^4+9n^3\right)+\left(n-1\right)n\left(n+1\right)\) => A chia hết cho 3 với mọi n thuộc N
+A= \(\left(6n^5+14n^4+10n^3\right)+\left(n^4-n\right)\) = \(\left(6n^5+14n^4+10n^3\right)+n\left(n-1\right)\left(n^2+n+1\right)\)=> A chia hết cho 2 .
+ A = \(\left(5n^5+15n^4+10n^3\right)+\left(n^5-n\right)\)= \(\left(5n^5+15n^4+10n^3\right)+n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\) chiaa hết cho 5 ( bạn chứng minh ccais cuối chia hết cho 5 = 5 TH)
=> A chia hết cho 2 .3.5 = 30
=> dpcm
Lời giải:
Ta có: $n^4-1=(n^2-1)(n^2+1)$
Ta biết rằng một số chính phương khi chia $5$ có thể có dư là $0,1,4$. Áp dụng điều này với $(n,5)=1$ thì $n^2$ chia $5$ dư $1$ hoặc $4$
Nếu $n^2$ chia $5$ dư $1$ $\Rightarrow n^2-1\vdots 5\Rightarrow n^4-1\vdots 5$
Nếu $n^2$ chia $5$ dư $4$ $\Rightarrow n^2+1\vdots 5\Rightarrow n^4-1\vdots 5$
Vậy $n^4-1\vdots 5(1)$
----------------
$n$ lẻ nên đặt $n=2k+1$ với $k$ nguyên
$n^4-1=(n^2-1)(n^2+1)=[(2k+1)^2-1][(2k+1)^2+1]=(4k^2+4k)(4k^2+4k+2)=8k(k+1)(2k^2+2k+1)$
Thấy $k(k+1)$ là tích 2 số nguyên liên tiếp nên $k(k+1)\vdots 2$
$\Rightarrow n^4-1=8k(k+1)(2k^2+2k+1)\vdots 16(2)$
Từ $(1);(2)$ mà $(5,16)=1$ nên $n^4-1\vdots (5.16=80)$ (đpcm)
Giải giúp e bài này vs: https://hoc24.vn/hoi-dap/question/883497.html
a, Ta có: \(\frac{n^5}{5}+\frac{n^3}{3}+\frac{7n}{15}=\frac{n^5-n}{5}+\frac{n}{5}+\frac{n^3-n}{3}+\frac{n}{3}+\frac{7n}{15}\)
\(=\frac{n^5-n}{5}+\frac{n^3-n}{3}+n\)
Chứng minh \(n^5-n⋮5\Rightarrow\frac{n^5-n}{5}\in Z\)
\(n^3-n⋮3\Rightarrow\frac{n^3-n}{3}\in Z\)
\(\Rightarrow\frac{n^5-n}{5}+\frac{n^3-n}{3}+n\in Z\)
=> Đpcm
b, Tương tự dùng tính chất chia hết