Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(A=n^8-n^6-n^4+n^2\)
\(A=\left(n^8-n^6\right)-\left(n^4-n^2\right)\)
\(A=n^6\left(n^2-1\right)-n^2\left(n^2-1\right)\)
\(A=\left(n^2-1\right)\left(n^6-n^2\right)\)
\(A=\left(n-1\right)\left(n+1\right)n^2\left(n^4-1\right)\)
\(A=n^2\left(n-1\right)\left(n+1\right)\left[\left(n^2\right)^2-1\right]\)
\(A=n^2\left(n-1\right)\left(n+1\right)\left(n^2-1\right)\left(n^2+1\right)\)
\(A=n^2\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
\(A=n\left(n-1\right)\left(n+1\right)n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
Ta có: \(n\left(n-1\right)\left(n+1\right)\) là tích của 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3
Còn: \(\left[n\left(n-1\right)\left(n+1\right)\right]\left[n\left(n-1\right)\left(n+1\right)\right]\) sẽ chia hết cho \(3\times3=9\)
Do n sẽ là số lẻ nên \(\left(n-1\right);\left(n+1\right)\) sẽ luôn luôn là số chẵn
Mà: \(\left(n-1\right)\left(n+1\right)\) sẽ chia hết cho 8 vì tích của hai số chẵn liên liếp sẽ chia hết cho 8
Còn \(\left(n+1\right)\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\) sẽ chia hết cho \(8\cdot8\cdot2=128\)
Ta có:
\(\text{Ư}\text{C}LN\left(9;128\right)=1\)
Nên: A ⋮ \(9\cdot128=1152\left(dpcm\right)\)
Đặt \(A=n^4-10n^2+9\)
\(n^4-n^2-9\left(n^2-1\right)=n.n\left(n-1\right)\left(n+1\right)-9\left(n^2-1\right)\)
Do \(n\left(n-1\right)\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên luôn chia hết cho 3
\(\Rightarrow A⋮3\)
Lại có: \(A=\left(n^2-1\right)\left(n^2-9\right)=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
Do n lẻ, đặt \(n=2k+1\)
\(\Rightarrow A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)
\(=2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)\)
\(=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k-1\right)\left(k+1\right)\left(k+2\right)\) là tích 4 số nguyên liên tiếp nên luôn chia hết cho 8
\(\Rightarrow A⋮\left(16.8\right)\Rightarrow A⋮128\)
Mà 3 và 128 nguyên tố cùng nhau \(\Rightarrow A⋮\left(128.3\right)\Rightarrow A⋮384\)
chia hết cho 8,hay bội số cua 8.
Đặt n=2k+1 với k thuộc Z
A=(2k+1)^2+4(2k+1)+5=4k^2+12k+10=
(2k+3)^2+1
ta biết 1 số bình phương chia cho 8 thì dư 1 hoặc 3(bạn nên chứng minh thêm bài toán phụ này)
khi đó A chia 8 sẽ dư 2 hoăc 4,suy ra đpcm
vì n là số lẻ nên ta đặt n = 2a+1 (với a E N)
n3-n = (2a+1)3-(2a+1) = 8a3+12a2+ 6a+1-2a-1 = 8a3+12a2+4a = 2a (4a2+6a +2) = 4a(a+1)(2a+1) = 2a.(2a+1).(2a+2)
Vì n3-n = 4a(a+1)(2a+1) chia hết cho 4.
+) Nếu a chẵn thì a chia hết cho 2 => n3-n = 4a(a+1)(2a+1) chia hết cho 2.4 = 8
+) Nếu a lẻ thì a+1 chẵn chia hết cho 2 => n3-n = 4a(a+1)(2a+1) chia hết cho 2.4 = 8
Vậy n3-n = 4a(a+1)(2a+1) chia hết cho 8
mặt khác n3-n = 2a.(2a+1).(2a+2) là tích của 3 số tự nhiên liên tiếp nên chia hết cho 3
Vậy n3-n chia hết cho 3.8 = 24 (vì 3 và 8 là 2 số nguyên tố cùng nhau )
Lưu ý: nếu A chia hết cho 2, chia hết cho 4 , chia hết cho 3 mà kết luận A chia hết cho 2.3.4 = 24 là sai vì 2, 4 không phải là 2 số nguyên tố cùng nhau. ví dụ 12 chia hết cho 2; 3; 4 nhưng không chia hết cho 24 nhé)
n3 - n = n ( n - 1 ) ( n + 1 )
n ( n - 1 ) là tích của 2 số tự nhiên liên tiếp chia hết cho 2
Vì n lẻ => n - 1 ; n + 1 là tích số chẵn chia hết cho 4
=> n ( n - 1 ) ( n + 1 ) chia hết cho 4
3 số tự nhiên liên tiếp có 1 số chia hết cho 3
=> n ( n - 1 ) ( n + 1 ) chia hết cho 3
=> n ( n - 1 ) ( n + 1 ) chia hết cho 2 . 3 . 4 = 24
=> n3 - n chia hết cho 24 ( đpcm ) .
\(1152=32.36\)
Đặt \(A=n^8-n^6-n^4+n^2=n^6\left(n^2-1\right)-n^2\left(n^2-1\right)\)
\(=n^2\left(n^2-1\right)\left(n^4-1\right)=n^2\left(n^2-1\right)\left(n^2-1\right)\left(n^2+1\right)\)
\(=\left[n\left(n-1\right)\left(n+1\right)\right]^2\left(n^2+1\right)\)
Do \(n\) lẻ \(\Rightarrow n=2k+1\)
\(\Rightarrow A=\left[\left(2k+1\right)\left(2k+1-1\right)\left(2k+1+1\right)\right]^2\left[\left(2k+1\right)^2+1\right]\)
\(=32\left[k\left(k+1\right)\left(2k+1\right)\right]^2.\left(2k^2+2k+1\right)\)
Do \(k\) và k+1 là 2 số tự nhiên liên tiếp \(\Rightarrow k\left(k+1\right)⋮2\) (1)
Nếu k chia hết cho 3 \(\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮3\)
Nếu k chia 3 dư 1 \(\Rightarrow2k+1⋮3\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮3\)
Nếu k chia 3 dư 2 \(\Rightarrow k+1⋮3\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮3\)
\(\Rightarrow k\left(k+1\right)\left(2k+1\right)\) luôn chia hết cho 3 (2)
(1);(2) \(\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮6\Rightarrow\left[k\left(k+1\right)\left(2k+1\right)\right]^2⋮36\)
\(\Rightarrow32\left[k\left(k+1\right)\left(2k+1\right)\right]^2⋮\left(32.36\right)\Rightarrow A⋮1152\)
ảnh đại diện trên google kìa