Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^6-n^4-n^2+1\)
\(=n^4\left(n^2-1\right)-\left(n^2-1\right)=\left(n^4-1\right)\left(n^2-1\right)\)
\(=\left(n^2-1\right)^2\left(n^2+1\right)\)
Thay n=2k+1 vào giải :))
\(n^6-n^4-n^2+1\\ =n^4\left(n^2-1\right)-\left(n^2-1\right)\\ =\left(n^4-1\right)\left(n-1\right)\left(n+1\right)\\ =\left(n^2-1\right)\left(n^2+1\right)\left(n-1\right)\left(n+1\right)\\ =\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n+1\right)\\ =\left(n-1\right)^2\left(n+1\right)^2\)
Hướng dẫn:
+) Với n = 7k ; k thuộc N
\(n^2+2n+3=\left(7k\right)^2+2.7k+3=7.A+3\)không chia hết cho 7
+) n= 7k +1
\(n^2+2n+3=\left(7k+1\right)^2+2.\left(7k+1\right)+3=7.A+\left(1+2+3\right)=7.B+6\)không chia hết cho 7
+) n = 7k+ 2...
+) n = 7k+3...
+) n= 7k + 4...
+) n= 7k+5...
+) n = 7k + 6
\(n^2+2n+3=\left(7k+6\right)^2+2.\left(7k+6\right)+3=7.G+\left(6^2+2.6+3\right)=7.G+51\)không chia hết cho 7
Vậy \(n^2+2n+3\)không chia hết cho 7 vs mọi n thuộc N
có biết đâu mà giúp, mong bạn thông cảm cho. Nhớ tick cho mình với
cậu chỉ ra mk xem cách giải cái bài này nghĩ ma k ra ak?
Để giải bài toán này, chúng ta sẽ sử dụng Định lý Fermat nhỏ và một số kiến thức về phép chia. Trước hết, chúng ta sẽ chứng minh rằng (n^6 - n^4 - n^2 + 1) chia hết cho 2. Ta có thể viết lại biểu thức này thành: [n^6 - n^4 - n^2 + 1 = (n^6 - n^4) - (n^2 - 1) = n^4(n^2 - 1) - (n^2 - 1) = (n^4 - 1)(n^2 - 1).] Ta biết rằng nếu (n) là số lẻ, thì (n^2 - 1) là một số chẵn. Vì vậy, ((n^4 - 1)(n^2 - 1)) chia hết cho 2. Tiếp theo, chúng ta sẽ chứng minh rằng (n^6 - n^4 - n^2 + 1) chia hết cho 32. Ta có thể viết lại biểu thức này thành: [n^6 - n^4 - n^2 + 1 = (n^6 - n^4) - (n^2 - 1) = n^4(n^2 - 1) - (n^2 - 1) = (n^4 - 1)(n^2 - 1).] Ta biết rằng nếu (n) là số lẻ, thì (n^2 - 1) là một số chẵn. Vì vậy, ((n^4 - 1)(n^2 - 1)) chia hết cho 32. Cuối cùng, chúng ta sẽ chứng minh rằng (n^6 - n^4 - n^2 + 1) chia hết cho 64. Ta sẽ sử dụng Định lý Fermat nhỏ: nếu (p) là một số nguyên tố và (a) là số nguyên không chia hết cho (p), thì (a^{p-1} \equiv 1 \pmod{p}). Ở đây, chúng ta sẽ chứng minh rằng (n^6 - n^4 - n^2 + 1 \equiv 0 \pmod{64}) khi (n) là số lẻ. Chúng ta sẽ xét hai trường hợp: Trường hợp 1: (n \equiv 1 \pmod{4}). Khi đó, (n^2 \equiv 1 \pmod{4}) và (n^4 \equiv 1 \pmod{4}). Do đó, (n^6 - n^4 - n^2 + 1 \equiv 1 - 1 - 1 + 1 \equiv 0 \pmod{64}). Trường hợp 2: (n \equiv 3 \pmod{4}). Khi đó, (n^2 \equiv 1 \pmod{4}) và (n^4 \equiv 1 \pmod{4}). Do đó, (n^6 - n^4 - n^2 + 1 \equiv 1 - 1 - 1 + 1 \equiv 0 \pmod{64}). Vậy, ta có thể kết luận rằng (n^6 - n^4 - n^2 + 1) chia hết cho 128 khi (n) là số lẻ.