K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí nhỏ Fermat vào biểu thức \(n^5-n\), ta được:

\(n^5-n⋮5\)(vì 5 là số nguyên tố)

Ta có: \(n^5-n\)

\(=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)\)

Vì n-1 và n là hai số nguyên liên tiếp nên \(\left(n-1\right)\cdot n⋮2\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)

Vì n-1; n và n+1 là ba số nguyên liên tiếp nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3\)

\(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)(cmt)

và ƯCLN(2;3)=1

nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\cdot3\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)⋮6\)

hay \(n^5-n⋮6\)

\(n^5-n⋮5\)(cmt)

và ƯCLN(6;5)=1

nên \(n^5-n⋮6\cdot5\)

hay \(n^5-n⋮30\)(đpcm)

11 tháng 7 2018

a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4

Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4

= (a+a+a+a+a) + (1+2+3+4)

= 5a + 10

= 5(a+2) chia hết cho 5

Vậy tổng của 5 số tự nhiên chia hết cho 5

26 tháng 8 2020

\(a^{n+4}-a^n=a^n\left(a^4-1\right)=a^{n-1}.a\left(a+1\right)\left(a-1\right)\left(a^2+1\right)\)

Vì \(a;a+1;a-1\) là 3 số nguyên liên tiếp => \(a.\left(a-1\right)\left(a+1\right)⋮3\)

Vì \(a;a+1\)là 2 số nguyên liên tiếp => \(a\left(a+1\right)⋮2\)

Lại có ( 3; 2) = 1; 3.2  => \(a^{n-1}.a\left(a+1\right)\left(a-1\right)\left(a^2+1\right)⋮6\)

Vì \(a\left(a+1\right)\left(a-1\right)\left(a^2+1\right)=a\left(a+1\right)\left(a-1\right)\left(a^2-4\right)+5a\left(a+1\right)\left(a-1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a+1\right)\left(a-1\right)⋮5\)

Mà ( 6; 5) = 1 và 6.5 = 30 

=> \(a^{n-1}.a\left(a+1\right)\left(a-1\right)\left(a^2+1\right)⋮30\)

=> đpcm

6 tháng 8 2017

b) Giải:

Đặt \(A=n^3+3n^2-n-3\) ta có

\(A=n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n^2-1\right)\left(n+3\right)=\left(n+1\right)\left(n-1\right)\left(n+3\right)\)

Thay \(n=2k+1\left(k\in Z\right)\) ta được:

\(A=\left(2k+2\right)2k\left(2k+4\right)=\) \(2\left(k+1\right).2k.2\left(k+2\right)\)

\(=8\left(k+1\right)k\left(k+2\right)\)

\(\left(k+1\right)k\left(k+2\right)\) là tích của \(3\) số tự nhiên nhiên tiếp nên chia hết cho \(6\) \(\Rightarrow A⋮8.6=48\)

Vậy \(n^3+3n^2-n-3\) \(⋮48\forall x\in Z;x\) lẻ (Đpcm)

Cảm ơn bạn rất nhiều! thanghoa

7 tháng 4 2019

để sai rồi

11 tháng 8 2018

n2+n+1 = n(n+1) + 1

vì n(n+1) là tích của hai số tự nhiên liên tiếp nên n(n+1) + 1 là số lẻ 

n(n+1) + 1 ko chia hết cho 4 (ĐPCM)

vì tích hai số liên tiếp có tận cùng là 0;2;6

=> n(n+1) có tận cùng 1 trong số 0;2;6 => n(n+1) +1 có tận cùng 1 trong số 1;3;7 ko chia hết cho 5(đpcm)

31 tháng 12 2018

Giả sử như mệnh đề trên đúng : 
n^2+1 chia hết cho 4 
* Nếu n chẵn : n = 2k , k thuộc N 
=> n^2 +1 = 4k^2 +1 k chia hết cho 4 
* nếu n lẻ : n = 2k + 1 
=> n^2 +1 = 4k^2 +4k +2 
=> n^2 +1 = 4k(k+1)+2 
k , k +1 là 2 số tự nhiên liên tiếp 
=> k(k+1) chia hết cho 2 
=> 4k(k+1)chia hết cho 4 
=> 4k(k+1)+2 chia cho 4 , dư 2 
=> 4k (k+1)+2 k chia hết cho 4

16 tháng 8 2016

Mk chỉ bt lm phần trên thôi nha :)

Xét thừa số (n+3) ta thấy: 3 là số tự nhiên lẻ (1)

Lại có trong thừa số (n+6): 6 là số tự nhiên chẵn(2)

Mà số tự nhiên chia hết cho 2 là số tự nhiên chẵn và trong 1 tích chỉ cần 1 thừa số là số chẵn => tích đó chẵn.(3)

Từ (1) (2) và (3): (n+3)x(n+6) luôn là số chẵn hay chia hết cho 2 với mọi n thuộc N

13 tháng 7 2015

Ta có : 5n=(.....5)

=> 5n-5=(....0)

=> 5n-5chia hết cho 10