Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CMR:
a) n5 - n chia hết cho 30 với n thuộc N
b) n4-10n2 + 9 chia hết cho 384 với mọi n lẻ, n thuộc Z
a) Áp dụng định lí nhỏ Fermat vào biểu thức \(n^5-n\), ta được:
\(n^5-n⋮5\)(vì 5 là số nguyên tố)
Ta có: \(n^5-n\)
\(=n\left(n^4-1\right)\)
\(=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)\)
Vì n-1 và n là hai số nguyên liên tiếp nên \(\left(n-1\right)\cdot n⋮2\)
\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)
Vì n-1; n và n+1 là ba số nguyên liên tiếp nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3\)
mà \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)(cmt)
và ƯCLN(2;3)=1
nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\cdot3\)
\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)
\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)⋮6\)
hay \(n^5-n⋮6\)
mà \(n^5-n⋮5\)(cmt)
và ƯCLN(6;5)=1
nên \(n^5-n⋮6\cdot5\)
hay \(n^5-n⋮30\)(đpcm)
a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4
Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4
= (a+a+a+a+a) + (1+2+3+4)
= 5a + 10
= 5(a+2) chia hết cho 5
Vậy tổng của 5 số tự nhiên chia hết cho 5
\(a^{n+4}-a^n=a^n\left(a^4-1\right)=a^{n-1}.a\left(a+1\right)\left(a-1\right)\left(a^2+1\right)\)
Vì \(a;a+1;a-1\) là 3 số nguyên liên tiếp => \(a.\left(a-1\right)\left(a+1\right)⋮3\)
Vì \(a;a+1\)là 2 số nguyên liên tiếp => \(a\left(a+1\right)⋮2\)
Lại có ( 3; 2) = 1; 3.2 => \(a^{n-1}.a\left(a+1\right)\left(a-1\right)\left(a^2+1\right)⋮6\)
Vì \(a\left(a+1\right)\left(a-1\right)\left(a^2+1\right)=a\left(a+1\right)\left(a-1\right)\left(a^2-4\right)+5a\left(a+1\right)\left(a-1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a+1\right)\left(a-1\right)⋮5\)
Mà ( 6; 5) = 1 và 6.5 = 30
=> \(a^{n-1}.a\left(a+1\right)\left(a-1\right)\left(a^2+1\right)⋮30\)
=> đpcm
b) Giải:
Đặt \(A=n^3+3n^2-n-3\) ta có
\(A=n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n^2-1\right)\left(n+3\right)=\left(n+1\right)\left(n-1\right)\left(n+3\right)\)
Thay \(n=2k+1\left(k\in Z\right)\) ta được:
\(A=\left(2k+2\right)2k\left(2k+4\right)=\) \(2\left(k+1\right).2k.2\left(k+2\right)\)
\(=8\left(k+1\right)k\left(k+2\right)\)
Mà \(\left(k+1\right)k\left(k+2\right)\) là tích của \(3\) số tự nhiên nhiên tiếp nên chia hết cho \(6\) \(\Rightarrow A⋮8.6=48\)
Vậy \(n^3+3n^2-n-3\) \(⋮48\forall x\in Z;x\) lẻ (Đpcm)
n2+n+1 = n(n+1) + 1
vì n(n+1) là tích của hai số tự nhiên liên tiếp nên n(n+1) + 1 là số lẻ
n(n+1) + 1 ko chia hết cho 4 (ĐPCM)
vì tích hai số liên tiếp có tận cùng là 0;2;6
=> n(n+1) có tận cùng 1 trong số 0;2;6 => n(n+1) +1 có tận cùng 1 trong số 1;3;7 ko chia hết cho 5(đpcm)
Giả sử như mệnh đề trên đúng :
n^2+1 chia hết cho 4
* Nếu n chẵn : n = 2k , k thuộc N
=> n^2 +1 = 4k^2 +1 k chia hết cho 4
* nếu n lẻ : n = 2k + 1
=> n^2 +1 = 4k^2 +4k +2
=> n^2 +1 = 4k(k+1)+2
k , k +1 là 2 số tự nhiên liên tiếp
=> k(k+1) chia hết cho 2
=> 4k(k+1)chia hết cho 4
=> 4k(k+1)+2 chia cho 4 , dư 2
=> 4k (k+1)+2 k chia hết cho 4
a: \(=n\left(n+1\right)+6\)
Vì n;n+1 là tích của hai số liên tiếp
nên n(n+1) có chữ số tận cùng là 0;2;6
=>Nếu n(n+1)+6 thì sẽ có chữ số tận cùng là 6;8;12
=>n(n+1)+6 ko chia hết cho 5
b: =n(n-1)(n+1)
Vì n;n-1;n+1 là ba số liên tiếp
nên \(n\left(n-1\right)\left(n+1\right)⋮3!=6\)