Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
A chia hết cho 120
a) Tự làm -.-
b) Ta có:
\(A=n^5-5n^3+4n=n.\left(n^4-5n^2+4\right)\)
\(A=n.\left(n^4-n^2-4n^2+4\right)\)
\(A=n.[n^2.\left(n^2-1\right)-4.\left(n^2-1\right)]\)
\(A=n.\left(n^2-1\right).\left(n^2-4\right)\)
\(A=n.\left(n-1\right).\left(n-1\right).\left(n-2\right).\left(n+2\right)\)
\(A=\left(n-2\right).\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\)
Vì \(n-2;n-2;n;n+1;n+2\) là tích của 5 số nguyên liên tiếp 3,5,8.
\(\Rightarrow\)\(A=\left(n-2\right).\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\) chia hết cho \(120\left(3.5.8\right)\)
Vậy \(n^5-5n^3+4n\) chia hết cho 120. ( đpcm )
Có: \(n^5-5n^3+4n\)
\(=n\left(n^4-5n^2+4\right)\)
\(=n\left(n^4-n^2-4n^2+4\right)\)
\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-1\right)\right]\)
\(=n\left(n^2-1\right)\left(n^2-4\right)\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Đây là 4 số tự nhiên liên tiếp nên chia hết cho 120
Đặt A là biểu thức cần xét.
Tổng các số hạng của A là: 100-1+1=100 (số hạng)
Nhóm 4 số hạng liên tiếm với nhau được 25 nhóm như sau:
A=(3x+1+3x+2+3x+3+3x+4)+(3x+5+3x+6+3x+7+3x+8)+...+(3x+97+3x+98+3x+99+3x+100)
A= 3x(3+32+33+34)+3x+4(3+32+33+34)+...+3x+96(3+32+33+34)
=> A=(3+32+33+34)(3x+3x+4+...+3x+96) = 120.(3x+3x+4+...+3x+96)
=> A chia hết cho 120 với mọi x
Đặt biểu thức là A. Ta có:
Tổng các số hạng của A là: 100-1+1=100 (số hạng)
Nhóm 4 số hạng liên tiếp với nhau được 25 nhóm như sau:
A = (3x+1+3x+2+3x+3+3x+4)+(3x+5+3x+6+3x+7+3x+8)+...+(3x+97+3x+98+3x+99+3x+100)
A = 3x(3+32+33+34)+3x+4(3+32+33+34)+...+3x+96(3+32+33+34) = (3+32+33+34)(3x+3x+4+...+3x+96)
=> A = 120.(3x+3x+4+...+3x+96)
=> A chia hết cho 120 với mọi x thuộc N
Ta có
\(n^5-5n^3+4n=n\left(n^4-5n^2+4\right)=n\left(n^4-n^2-4n^2+4\right)\)
\(=n.\left(n^2\left(n^2-1\right)-4\left(n^2-1\right)\right)=n.\left(n^2-4\right)\left(n^2-1\right)\)
\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)là 5 số liên tiếp
=>chia hết cho 120
n5-5n3+4n=n5-4n3-n3+4n=n3(n2-4)-(n3-4n)=n3(n2-4)-n(n2-4)=(n3-n)(n2-4)
rồi bạn c/m 1 trong 2 thừa số chia hết cho 120