Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : k là ƯCLN của 7n + 10 và 5n + 7
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k
Hay 5(7n + 10 ) và 7(5n + 7 )
35n + 50 và 35n + 49 chia hết cho k
=> ĐPCM
Hai bài kia bạn làm tương tư nhé , chúc may mắn
Đặt UCLN(2n + 3 ; 4n + 8) = d
2n +3 chia hết cho d => 4n + 6 chia hết cho d
< = > [(4n+8)-(4n + 6] chia hết cho d
2 chia hết cho d mà 2n + 3 là số lẻ
=> d = 1
Vậy (2n + 3 ; 4n +8) = 1
gọi UCLN(2n+3;4n+8) là d
=>2n+3 chia hết cho d =>2(2n+3) chia hết cho d=>4n+6 chia hết cho d
4n+8 chia hết cho d
=>(4n+8)-(4n+6) chia hết cho d
=>2 chia hết cho d
=>d thuộc{1;2}
mà 2n+3 là số lẻ nên d ko thể là 2, vậy d=1
=>UCLN(2n+3;4n+8)=1
vậy 2n+3 và 4n+8 nguyên tố cùng nhau
Vì 14n+3 và 21n+4 là hai sô nguyên tố cùng nhau
=>ƯCLN(14n+3,21n+4)=1
Ta có:
Gọi UCLN của hai số đó là d
=>14n+3 chia hết cho d
21n+4 chia hết cho d
=>3.(14n+3)=42n+9 chia hết cho d
2.(21n+4)=42n+8 chia hết cho d
=>42n+9-42n+8 chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy 14n+3 và 21n+4 là hai số nguyên tố cùng nhau(ĐPCM)
Gọi ƯCLN ( 2n+1 ; 2n+3 ) = d ( d là số tự nhiên )
=> 2n+1 chia hết cho d ; 2n+3 chia hết cho d
=> 2n+3- (2n+1) chia hết cho d
=> 2 chia hết cho d
=> d= 1;2
Vì 2n+1; 2n+3 là các số lẻ
=> 2n+1; 2n+3 không chia hết cho 2
= > d=1
=> ƯCLN ( 2n+1 ; 2n+3 )=1
=> 2.n+1 và 2.n+3 là 2 số nguyên tố cùng nhau
Không biết thế này có đúng không nhưng mình vẫn muốn hỏi
Gọi d là WCLN(2n+3, 3m+4); n thuộc N
Ta có: 2n+3 chia hết cho d; 3m+4 chia hết cho d
3(2n+3) chia hết cho d; 2(3m+4) chia hết cho d
nên (6m+9-6n+8)
=> d chia hết cho 1
=> d=1
Gọi d là ƯCLN(n + 1, 3n + 4 )
\(\Rightarrow n+1⋮d\Rightarrow3.\left(n+1\right)⋮d\Rightarrow3n+3⋮d\)
3n + 4: Giữ nguyên
\(\left[\left(3n+4\right)-\left(3n+3\right)\right]⋮d\)
\(\left[3n+4-3n-3\right]⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy n+1 và 3n+4 là số nguyên tố cùng nhau
Ta chứng minh bằng phản chứng
Giả sử n+1 và 3n+4 có UCLN là k> 1 (k là số tự nhiên)
Khi đó : n+1 = a.k ( Với a là số tự nhiên khác 0)
3n+4 = b.k ( Với b là số tự nhiên khác 0)
Ta có: b.k= 3n+4 = 3n+3+1 = 3(n+1)+1 = 3.a.k +1 (1)
Vế trái của (1) là một số chia hết cho k , Vế phải của (1) không chia hết cho k. (Mâu thuẫn)
Vậy n+1 và 3n+4 nguyên tố cùng nhau. (Đcpcm)
Gọi d là ƯCLN của n + 4 và n + 3 ta có:
n + 4 ⋮ d và n + 3 ⋮ d
⇒ (n + 4) - (n + 3) ⋮ d
⇒ n + 4 - n - 3 ⋮ d
⇒ 1 ⋮ d
⇒ d = 1
Vậy n + 4 và n + 3 là cặp SNT cùng nhau