K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2018

ta có : 

\(n^3+5n=n^2-n+6n\)

                \(=\left(n-1\right)n\left(n+1\right)+6n\)

mà \(\left(n-1\right)n\left(n+1\right)⋮2;3\)

\(\Rightarrow\left(n-1\right)n.\left(n+1\right)⋮6\)

\(\Rightarrow6n⋮6\)

\(\Rightarrow n^3+5n⋮6\)

17 tháng 12 2018

sorry mk nhầm ! 

chỗ : \(n^2-n+6n\)phải thành 

\(n^3-n+6n\)

8 tháng 2 2019

\(A=n^3+3n^2+5n+3\)

\(=n^2\left(n+1\right)+2n\left(n+1\right)+3\left(n+1\right)\)

\(=\left(n+1\right)\left(n^2+2n+3\right)\)

\(=\left(n+1\right)\left[n\left(n+2\right)+3\right]\)

\(=n\left(n+1\right)\left(n+2\right)+3\left(n+1\right)\)

Do n ; n + 1 ; n + 2 là 3 số nguyên dương liên tiếp

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\)

\(\Rightarrow...+3\left(n+1\right)⋮3\)

hay \(A⋮3\left(đpcm\right)\)

8 tháng 2 2019

\(A=n^3+3n^2+6n-\left(n+3\right)+6\)

\(=\left(n^2-1\right)\left(n+3\right)+6n+6\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)+6\left(n+1\right)\)

Có: \(n+3\equiv n\)(mod 3)

\(\left(n-1\right)n\left(n+1\right)⋮3\forall n\in Z^+\)

nên \(A⋮3\forall n\in Z^+\)

9 tháng 11 2017

khai triển ra, ta dc:
25^n+5^n-18^n-12^n (1)
=(25^n-18^n)-(12^n-5^n)
=(25-18)K-(12-5)H = 7(K-H) chia hết cho 7
.giải thích: 25^n-18^n=(25-18)[25^(n-1)+ 25^(n-2).18^1 +.....+18^n]=7K vì đặt K là [25^(n-1)+ 25^(n-2).18^1 +.....+18^n, cái (12-5)H cx tương tự

Biểu thức đó đã chia hết cho 7 rồi, bây h cần chứng minh biểu thức đó chia hết cho 13 là xong
từ (1) nhóm ngược lại để chia hết cho 13. Cụ thể là (25^n-12^n)-(18^n-5^n) chia hết cho 13, cách chứng minh chia hết cho 13 này cx tương tự như cách c.minh chia hết cho 7

.1Mà biểu thức này vừa chia hết cho 7, vừa chia hết cho 13 nên chia hết cho (7.13)=91

Xong!!!

9 tháng 11 2017

hơi bị khó hiểu

15 tháng 8 2018

Help me TT 

15 tháng 8 2018

Giúp mk vs ? 

3 tháng 9 2016

\(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)

Vì n(n+1)(n+2) là tích của 3 số tự nhiên liên tiếp nên chia hết cho cả 2 và 3 . Mà (2,3) = 1 nên n(n+1)(n+2) chia hết cho 6.

Từ đó có đpcm

3 tháng 9 2016

\(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)⋮6\)

=>đpcm

20 tháng 10 2017

Thực hiện phép chia, ta được:Thương của A chia cho B là n3 – 6n2 + 11n – 6Ta có: 3 2 3 226 11 6 12 6 6( 1) .( 1) 6.(2 1)n n n n n n nn n n n n− + − = − + − −= − + + − −Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp nên tích đó vừa chia hết cho 2, vừa chia hết cho 3 suy ra tích đó chia hết cho 6Mặt khác 6(2n-n2-1) chia hết cho 6=> Th¬ng cña phÐp chia A cho B lµ béi sè cña 6

 

14 tháng 10 2017

Lời giải:

\(A=x^3+y^3+z^3-x-y-z\)

\(A=\left(x^3-x\right)+\left(y^3-y\right)+\left(z^3-z\right)\)

\(A=x\left(x^2-1\right)+y\left(y^2-1\right)+z\left(z^2-1\right)\)

\(A=x\left(x-1\right)\left(x+1\right)+y\left(y-1\right)\left(y+1\right)+z\left(z-1\right)\left(z+1\right)\)

\(A=\left(x-1\right)x\left(x+1\right)+\left(y-1\right)y\left(y+1\right)+\left(z-1\right)z\left(z+1\right)\)

Ta có:\(\left\{{}\begin{matrix}x-1;x;x+1\\y-1;y;y+1\\z-1;z;z+1\end{matrix}\right.\) là 3 số tự nhiên liên tiếp

Suy ra: \(\left\{{}\begin{matrix}\left(x-1\right)x\left(x+1\right)\\\left(y-1\right)y\left(y+1\right)\\\left(z-1\right)z\left(z+1\right)\end{matrix}\right.\) chia hết cho \(6\)

Hay \(A⋮6\left(đpcm\right)\)

17 tháng 8 2019

cậu có saii đề không ạ ? Mình nghĩ là bình phương chứ?

17 tháng 8 2019

thêm bình phương nữa bạn

17 tháng 8 2019

\(\left(n^2+n-1\right)-1⋮24\forall n\in Z\) help me

18 tháng 8 2019

Sửa đề: \(\left(n^2+n-1\right)^2-1\)

\(\Leftrightarrow\left(n^2+n\right)\left(n^2+n-2\right)\)

\(\Leftrightarrow n\left(n+1\right)n^2+2n-n-2\)

\(\Leftrightarrow n\left(n+1\right)n\left(n+2\right)-\left(n+2\right)\)

\(\Leftrightarrow\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮24\)( Tích 4 số tự nhiên liên tiếp)

Chúc bạn học tốt!!

29 tháng 3 2018

Bạn ơi đề thiếu cái gì đó rùi nha !

Vì nếu ta thay n lẻ thì :

n^2 cũng lẻ => n^2-2 lẻ => (n^2-2)^2 lẻ

=> [n.(n^2-2)^2] lẻ nên ko thể chia hết cho 10 là số chẵn