\(n^2+n+2\)không chia hết cho 15 \(\forall n\in N\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2017

Ta có: n^2 + n + 2 = n(n+1) + 2. 
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6. 
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8. 
Mà: 2; 4; 8 không chia hết cho 5. 
Nên: n(n+1)+2 không chia hết cho 5. 
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N

18 tháng 1 2017

Ta có: n2+n+2=n(n+1)+2

Để số trên chia hết cho 15 thì số trên phải chia hết cho 3 và 5.

Mà tích của 2 số tự nhiên liên tiếp có tận cùng là 0,2,6.

Mà số trên cộng với 2 có tận cùng sẽ là 2,4,8. ( không chia hết cho 5).

Vậy số trên không chia hết cho 15.

14 tháng 1 2017

Ta có: n^2 + n + 2 = n(n+1) + 2. 
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6. 
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8. 
Mà: 2; 4; 8 không chia hết cho 5. 
Nên: n(n+1)+2 không chia hết cho 5. 
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N.

14 tháng 1 2017

Ta có: n^2 + n + 2 = n﴾n+1﴿ + 2.

n﴾n+1﴿ là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6.

Suy ra: n﴾n+1﴿+2 có chữ số tận cùng là 2; 4; 8.

Mà: 2; 4; 8 không chia hết cho 5.

Nên: n﴾n+1﴿+2 không chia hết cho 5.

Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N. 

21 tháng 1 2020

A = 4n + 4n + 16 = 2.4n + 16

Có 4 đồng dư với 1 (mod 3)

=> 4n đồng dư với 1(mod 3)

=> 2.4n đồng dư với 2(mod 3)

Mà 16 đồng dư với 1(mod 3)

=> 2.4n + 16 đồng dư với 1+2=3(mod 3)

Hay A chia hết cho 3 với mọi số nguyên dương n

21 tháng 1 2020

bạn ơi

\(2^{2^n}\)sao bằng \(4^n\)được hả bạn

24 tháng 12 2016

Đặt A=n^2+7n+22

Giả sử A=n^2+7n+22 chia hết cho 9 thì A cũng chia hết cho 3 

=> n^2+7n+22-3(3n+7)=n^2+7n+22-9n-21=n^2-2n+1=(n-1)^2 cũng chia hết cho 3 ,mà n E Z => n-1 cũng chia hết cho 3

Vì n-1 chia hết cho 3,đặt n-1=3k=>n=3k+1

Thay n=3k+1 vào A,ta có A=(3k+1)^2+7(3k+1)+22=9k^2+6k+1+21k+7+22=9k^2+27k+30 không chia hết cho 9,vậy điều giả sử là sai => đpcm