![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi d = ƯCLN(2n + 1; 3n + 1)
⇒⎧⎨⎩2n+1⋮d3n+1⋮d⇒{2n+1⋮d3n+1⋮d ⇒⎨⎩3(2n+1)⋮d2(3n+1)⋮d⇒{3(2n+1)⋮d2(3n+1)⋮d ⇒⎧⎨⎩6n+3⋮d6n+2⋮d⇒{6n+3⋮d6n+2⋮d
⇒⇒ (6n + 3) – (6n + 2) ⋮⋮ d
⇒⇒1 ⋮⋮d
⇒⇒d = 1
Do đó: ƯCLN(2n + 1; 3n + 1) = 1
Vậy hai số 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau.
bạn làm giống thế này nhé xin lỗi vì mình ko cho kq nhưng bạn phải tự làm mới hiểu được
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : k là ƯCLN của 7n + 10 và 5n + 7
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k
Hay 5(7n + 10 ) và 7(5n + 7 )
35n + 50 và 35n + 49 chia hết cho k
=> ĐPCM
Hai bài kia bạn làm tương tư nhé , chúc may mắn
![](https://rs.olm.vn/images/avt/0.png?1311)
câu a : xem lại đề
b:
gọi UCLN(2n+3;4n+8)=d
ta có :
2n+3 chia hết cho d => 2(2n+3) chia hết cho d =>4n+6 chia hết cho d
4n+8 chia hết cho d
=>(4n+8)-(4n+6) chia hết cho d
=>2 chia hết cho d
=>d thuộc U(2)={1;2}
nếu d=2
htif 2n+3 ko chia hết cho 2
=>d=1
=>UCLN(..)=1
=>dpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(p\)là số nguyên tố lớn hơn \(3\)nên \(p\)là số lẻ.
\(p=2k+1\)suy ra \(\left(p-1\right)\left(p+1\right)=2k\left(2k+2\right)=4k\left(k+1\right)⋮8\)
(vì \(k\left(k+1\right)\)là tích của hai số tự nhiên liên tiếp nên chia hết cho \(2\))
\(p\)là số nguyên tố lớn hơn \(3\)nên \(p=3k\pm1\).
Khi đó \(\left(p-1\right)\left(p+1\right)\)sẽ chia hết cho \(3\).
Mà \(\left(8,3\right)=1\)nên \(\left(p-1\right)\left(p+1\right)\)chia hết cho \(8.3=24\).
b) Đặt \(\left(2n+1,3n+1\right)=d\).
Suy ra
\(\hept{\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}}\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
![](https://rs.olm.vn/images/avt/0.png?1311)
vì n và n+1 là 2 số tự nhiên liên tiếp
=) n + n+1 chia hết cho 2 (1)
vì n, n+1 và n+2 là 3 stn liên tiếp
=) n+n+1+n+2 chia hết cho 3 (2)
Từ (1) và (2) =) n+n+1+n+2 chia hết cho 6
hay BCNN của n+n+1+n+2 là 6
vậy ....
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi d là ƯC( n + 2 ; 2n + 3 )
=> \(\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+2\right)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+4⋮d\\2n+3⋮d\end{cases}}\)
=> \(2n+4-\left(2n+3\right)⋮d\)
=> \(1⋮d\)=> \(d=1\)
=> ƯCLN( n + 2 ; 2n + 3 ) = 1
hay n + 2 ; 2n + 3 là hai số nguyên tố cùng nhau