K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2019

(n+1)(n+2)(n+3)....2n  ( 1 )

Dễ thấy ( 1 ) đúng với n = 2

giả sử bất đẳng thức đúng với n = k nghĩa là (k+1)(k+2)(k+3)...2k > 2k

Ta chứng minh BĐT đúng với n = k+1

\(\Rightarrow\)( k + 2 )(k+3)(k+4)...2(k+1) > 2k+1

Thật vậy, theo giả thiết quy nạp,ta có :

(k+1)(k+2)(k+3)...2k > 2k

\(\Rightarrow\)(k+1)(k+2)(k+3)...2k(2k+1) > 2k

\(\Rightarrow\)2(k+1)(k+2)(k+3)...2k(2k+1) > 2k+1

\(\Rightarrow\)(k+2)(k+3)...2k(2k+1)(2k+2) > 2k+1

Vậy BĐT ( 1 ) đúng với mọi n > 1 hay .....

13 tháng 5 2019

\(n^3-13n=n\left(n^2-1\right)-12n.\)

                   \(=n\left(n-1\right)\left(n-2\right)-12n\)

Vậy chia hết cho 6 vì 

      n(n-1)(n-2) chia hết cho 2;3 => chia hết cho 6

     12n chia hết cho 6

17 tháng 8 2018

Ta có : n + 3 = (n + 1) + 2

Do n + 1\(⋮\)n + 1

Để n + 3 \(⋮\)n + 1 thì 2 \(⋮\)n + 1 => n + 1 \(\in\)Ư(2) = {1; -1; 2; - 2}

Lập bảng :

 n + 1 1  -1 2 -2
   n 0 -2 1 -3

Vậy n \(\in\){0; -2; 1; -3} thì n + 3 \(⋮\)n + 1

b) Ta có : 2n + 7 = 2.(n - 3) + 13 

Do n - 3 \(⋮\)n - 3

Để 2n + 7 \(⋮\)n - 3 thì 13 \(⋮\)n - 3 => n - 3 \(\in\)Ư(13) = {1; -1; -13 ;  13}

Lập bảng :

 n - 3 1 -1 13 -13
   n 4 2 16 -10

Vậy n \(\in\){4; 2; 16; -10} thì 2n + 7 \(⋮\)n - 3

17 tháng 8 2018

Bài 1 :

a) \(n+3⋮n+1\)

\(a+1+2⋮n+1\)

\(\Rightarrow2⋮n+1\)

\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

n+11-12-2
n0-21-3

b) c) d) tương tự

Bài 2 :

\(A=5+4^2\cdot\left(1+4\right)+...+4^{58}\cdot\left(1+4\right)\)

\(A=5+4^2\cdot5+...+4^{58}\cdot5\)

\(A=5\cdot\left(1+4^2+...+4^{58}\right)⋮5\)

Còn lại : tương tự

5 tháng 2 2016

95

ủng hộ mk nha các bạn

12 tháng 1 2017

a) n+3=n-2+5 Để n+3 chia hết chp n-2 thì 5 chia hết cho n-2 => n-2 thuộc ước của 5 => n-2 thuộc { -5;-1:1;5}

=> n= tự tìm