Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: M + N + 1 = 111...1 + 444...4 + 1
(2n c/s 1)(n c/s 4)
= 111...1 x 1000...0 + 111...1 + 111...1 x 4 + 1
(n c/s 1) (n c/s 0) (n c/s 1) (n c/s 1)
= 111...1 x (1000...0 + 1 + 4) + 1
(n c/s 1) (n c/s 0)
= 111...1 x 1000...05 + 1
(n c/s 1) (n-1 c/s 0)
= 111...1 x 3 x 333...35 + 1
(n c/s 1) (n-1 c/s 3)
= 333...3 x 333...35 + 1
(n c/s 1) (n-1 c/s 3)
= 333...3 x 333...34 + 333...3 + 1
(n c/s 3) (n-1 c/s 3) (n c/s 3)
= 333...3 x 333...4 + 333...34
(n c/s 3) (n-1 c/s 3) (n-1 c/s 3)
= 333...342 là số chính phương (đpcm)
(n-1 c/s 3)
Ta chứng minh được
\(\overline{aaa....a}\) ( n số a)
\(=\frac{\left(10^n-1\right)}{9}.a\)
\(\Rightarrow M+N+1=\frac{\left(10^{2n}-1\right)}{9}+\frac{\left(10^n-1\right)}{9}.4+1\)
\(\Rightarrow M+N+1=\frac{\left(10^{2n}-1\right)+\left(10^n-1\right)4+9}{9}\)
\(\Rightarrow M+N+1=\frac{10^{2n}-1+4.10^n-4+9}{9}\)
\(\Rightarrow M+N+1=\frac{10^{2n}+4.10^n+4}{9}\)
\(\Rightarrow M+N+1=\frac{\left(10^n\right)^2+2.10^n.2+2^2}{9}\)
\(\Rightarrow M+N+1=\frac{\left(10^n+2\right)^2}{9}\)
\(\Rightarrow M+N+1=\left[\frac{\left(10^n+2\right)}{3}\right]^2\)
Mặt khác \(10^n+2=100...02\) ( n - 1 ) số 0
Tổng chữ số \(=1+0\left(n-1\right)+2=3⋮3\)
=> \(10^n+2⋮3\)
=> \(\frac{\left(10^n+2\right)}{3}\in N\)
\(\Rightarrow\left[\frac{\left(10^n+2\right)}{3}\right]^2\) là số chính phương
=> M+N+1 là số chình phương
Bài này hay thật mình thì chỉ nghĩ ra mỗi cách này. Nhưng ko biết vs học phô thông thì tư duy thế nào
1 số chính phương có tận cùng bằng 0,1,4,5,6,9
N+1 tận cùng =9=> n tận cùng bằng 8 => 2n+1 tận cùng =7 => loại
(2n+1)-(n+1)=n=a^2-b^2=(a-b)(a+b)
2n+1 là số lẻ => a lẻ
N chẵn=> b chẵn
1 số chính phương chia cho 4 dư 0 hoặc 1 => (a+b)(a-b) chia hết cho 8
Còn nó chia hết cho 3 hay không thì phải dùng định lý của fermat đẻ giải
http://en.wikipedia.org/wiki/Fermat%27s_little_theorem
như vậy chưng minh no chia het cho 8 và 3 là có thể két luạn nó chia hêt cho 24
Nếu n=4 thì: \(1!+2!+3!+4!=33.\) không là số chính phương.
Nếu n>4 thì ta luôn có n! tận cùng bằng 0 (vì có tích 2*5).
\(\Rightarrow1!+2!+3!+...+n!\) có tận cùng là 3 ko là số chính phương.
Vậy ...