K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

giả sử \(\left(n+1;n+2\right)=d\)         \(\left(d\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\n+2⋮d\end{cases}}\)

\(\left(n+2\right)-\left(n+1\right)⋮d\)

hay \(1⋮d\Rightarrow d=1\)

2 cái còn lại làm tương tự

7 tháng 3 2023

a) Gọi ƯCLN(n+1, 2n+3) = d (d ∈ N*)
=> n+1 ⋮ d => 2(n+1) ⋮ d => 2n+2 ⋮ d

    2n+3 ⋮ d

=> (2n+3)-(2n+2) ⋮ d => 1⋮ d

Mà d ∈ N* => d =1

=> ƯCLN(n+1, 2n+3) = 1

Vậy phân số n+1/2n+3 là phân số tối giản (đpcm)

b)Gọi ƯCLN(2n+3, 4n+8) = d (d ∈ N*)

=> 2n+3 ⋮ d => 2(2n+3) ⋮ d => 4n+6 ⋮ d

    4n+8 ⋮ d

=> (4n+8)-(4n+6) ⋮ d => 2⋮ d

Mà d ∈ N* => d =1; 2

Vì 2n ⋮ 2, 3 không ⋮ 2 => 2n+3 không ⋮ 2

=> d ≠ 2 => d = 1

=> ƯCLN(2n+3, 4n+8)=1

Vậy phấn số 2n+3/4n+8 là phân số tối giản (đpcm) 

17 tháng 7 2023

) Gọi ƯCLN(n+1, 2n+3) = d (d ∈ N*)
=> n+1 ⋮ d => 2(n+1) ⋮ d => 2n+2 ⋮ d

    2n+3 ⋮ d

=> (2n+3)-(2n+2) ⋮ d => 1⋮ d

Mà d ∈ N* => d =1

=> ƯCLN(n+1, 2n+3) = 1

Vậy phân số n+1/2n+3 là phân số tối giản (đpcm)

b)Gọi ƯCLN(2n+3, 4n+8) = d (d ∈ N*)

=> 2n+3 ⋮ d => 2(2n+3) ⋮ d => 4n+6 ⋮ d

    4n+8 ⋮ d

=> (4n+8)-(4n+6) ⋮ d => 2⋮ d

Mà d ∈ N* => d =1; 2

Vì 2n ⋮ 2, 3 không ⋮ 2 => 2n+3 không ⋮ 2

=> d ≠ 2 => d = 1

=> ƯCLN(2n+3, 4n+8)=1

Vậy phấn số 2n+3/4n+8 là phân số tối giản (đpcm) 

 Đúng(0)   Cao yến Chi Cao yến Chi14 tháng 4 2020 lúc 12:42  

bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản

A=2n+1/2n+2

B=2n+3/3n+5

Bài 2: 

a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản

b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản

giúp mk với 

mk sẽ tick cho!!

DD
27 tháng 2 2021

a) Đặt \(d=\left(n+1,2n+3\right)\).

Suy ra \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n+2\right)=1⋮d\)

Suy ra \(d=1\)

Do đó ta có đpcm. 

b) Bạn làm tương tự ý a). 

c) Đặt \(d=\left(3n+2,5n+3\right)\).

Ta có: \(\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}}\Rightarrow5\left(3n+2\right)-3\left(5n+3\right)=1⋮d\).

Suy ra \(d=1\)

27 tháng 2 2021
N=2 2n=2.10
25 tháng 2 2021

Gọi ƯC( 2n + 3 ; 4n + 2 ) = d

=> 2n + 3 ⋮ d và 4n + 2 ⋮ d

=> 4n + 6 ⋮ d và 4n + 2 ⋮ d

=> 4n + 6 - ( 4n + 2 ) ⋮ d

=> 4n + 6 - 4n - 2 ⋮ d

=> 4 ⋮ d

=> d ∈ { 1 ; 2 ; 4 }

d = 1 ( nhận )

d = 2 ( loại ) do 2n + 3 ⋮/ 2

d = 4 loại do 2n + 3 ⋮/ 4

=> d = 1

=> ƯCLN( 2n + 3 ; 4n + 2 ) = 1

hay \(\frac{2n+3}{4n+2}\)là phân số tối giản ( dpcm )

NM
25 tháng 2 2021

Ta có 

\(2n+3\text{ là số lẻ với mọi n}\)

\(4n+2\text{ là số chẵn với mọi n}\) do đó \(\left(2n+3,4n+2\right)=1\text{ hay phân số đã cho là phân số tối giản}\)

AH
Akai Haruma
Giáo viên
17 tháng 4 2022

Lời giải:

a/

Gọi ƯCLN(n+1, 2n+3)=d$ 

Khi đó:

$n+1\vdots d\Rightarrow 2n+2\vdots d(1)$

$2n+3\vdots d(2)$

Từ $(1); (2)\Rightarrow (2n+3)-(2n+1)\vdots d$ hay $1\vdots d$

$\Rightarrow d=1$
Vậy $n+1, 2n+3$ nguyên tố cùng nhau nên phân số đã cho tối giản. 

Câu b,c làm tương tự.

a) \(\frac{2n+3}{4n+1}\) là phân số tối giản

\(\frac{2n+3}{4n+1}\)\(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1

=>n=1

mình ko chắc là đúng nha

20 tháng 2 2016

Gọi UCLN(2n+3,4n+8)=d

Ta có:2n+3 chia hết cho d

         4n+8 chia hết cho d

=>2(2n+3) chia hết cho d

4n+8 chia hết cho d

=>4n+6 chia hết cho d

4n+8 chia hết cho d

=>(4n+8)-(4n+6) chia hết cho d

=>2 chia hết cho d

=>d={1,2}

Mà 2n+3 là số lẻ nên không chia hết cho 2

=>d=1

Vậy phân số 2n+3/4n+8 tối giản

7 tháng 2 2016

a ) Gọi d là ƯCLN ( n + 1 ; 2n + 3 )

⇒ n + 1 ⋮ ⇒ 2.( n + 1 ) ⋮ d

⇒ 2n + 3 ⋮ ⇒ 1 . ( 2n + 3 ) ⋮ d

[ 2.( n + 1 ) - 1.( 2n + 3 ) ] ⋮ d

[ ( 2n + 2 ) - ( 2n + 3 ) ] ⋮ d

⇒ ⋮ ⇒ d = 1

Vì ƯCLN ( n + 1 ; 2n + 3 ) = 1 nên \(\frac{n+1}{2n+3}\) là phân số tối giản

Các câu khác tương tự