K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1/ Xét \(\left(n^{1010}\right)^2=n^{2020}< n^{2020}+1=\left(n^{1010}+1\right)^2-2n^{1010}< \left(n^{1010}+1\right)^2\)

Vì \(n^{2020}+1\)nằm ở giữa 2 số chính phương liên tiếp là \(\left(n^{1010}\right)^2\)và \(\left(n^{1010}+1\right)^2\)nên không thể là số chính phương.

2/ Mình xin sửa đề là 1 tí đó là tìm \(n\inℤ\)để A là số chính phương nha bạn, vì A hoàn toàn có thể là số chính phương

\(A>n^4+2n^3+n^2=\left(n^2+n\right)^2,\forall n\inℤ\)

\(A< n^4+n^2+9+2n^3+6n^2+6n=\left(n^2+n+3\right)^2,\forall n\inℤ\)

Vì A bị kẹp giữa 2 số chính phương là \(\left(n^2+n\right)^2,\left(n^2+n+3\right)^2\)nên A là số chính phương khi và chỉ khi:

+) \(A=\left(n^2+n+1\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+1+2n^3+2n^2+2n\)

\(\Leftrightarrow n^2+n-6=0\Leftrightarrow\orbr{\begin{cases}n=2\\n=-3\end{cases}}\)

+) \(A=\left(n^2+n+2\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+4+2n^3+4n^2+4n\)

\(\Leftrightarrow3n^2+3n-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{5}}{2}\notinℤ\)---> Với n=-3;2 thì A là số chính phương.

3/ Bằng phản chứng giả sử \(n^3+1\)là số chính phương:

---> Đặt: \(n^3+1=k^2,k\inℕ^∗\Rightarrow n^3=k^2-1=\left(k-1\right)\left(k+1\right)\)

Vì n lẻ nên (k-1) và (k+1) cùng lẻ ---> 2 số lẻ liên tiếp luôn nguyên tố cùng nhau

Lúc này (k-1) và (k+1) phải là lập phương của 2 số tự nhiên khác nhau

---> Đặt: \(\hept{\begin{cases}k-1=a^3\\k+1=b^3\end{cases},a,b\inℕ^∗}\)

Vì \(k+1>k-1\Rightarrow b^3>a^3\Rightarrow b>a\)---> Đặt \(b=a+c,c\ge1\)

Có \(b^3-a^3=\left(k+1\right)-\left(k-1\right)\Leftrightarrow\left(a+c\right)^3-a^3=2\Leftrightarrow3ca^2+3ac^2+c^3=2\)

-----> Quá vô lí vì \(a,c\ge1\Rightarrow3ca^2+3ac^2+c^3\ge7\)

Vậy mâu thuẫn giả thiết ---> \(n^3+1\)không thể là số chính phương với n lẻ.

13 tháng 3 2016

Đặt  \(P=n^6-n^4+2n^3+2n^2\)  thì 

\(n^6-n^4+2n^3+2n^2=n^2\left(n^4-n^2+2n+2\right)=n^2\left[n^2\left(n-1\right)\left(n+1\right)+2\left(n+1\right)\right]\) 

                                             \(=n^2\left(n+1\right)\left(n^3-n^2+2\right)=n^2\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\)

                                             \(=n^2\left(n+1\right)\left[\left(n+1\right)\left(n^2-n+1\right)-\left(n+1\right)\left(n-1\right)\right]\)

                                        \(P=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)

Với \(n\in N;\)  \(n>1\), ta có:

  \(n^2-2n+2=\left(n-1\right)^2+1>\left(n-1\right)^2\)

  và  \(n^2-2n+2=n^2-2\left(n-1\right)\text{<}n^2\)  

Theo đó, \(\left(n-1\right)^2\text{< }n^2-2n+2\text{< }n^2\) 

Mặt khác, \(\left(n-1\right)^2\)  và  \(n^2\)  là hai số chính phương liên tiếp

Do đó,    \(n^2-2n+2\)  không thể là một số chính phương.

Vậy,  \(P\)  không là số chính phương với mọi   \(n\in N;\)  \(n>1\).

13 tháng 3 2016

Đặt  \(P=n^6-n^4+2n^3+2n^2\)  thì 

\(n^6-n^4+2n^3+2n^2=n^2\left(n^4-n^2+2n+2\right)=n^2\left[n^2\left(n-1\right)\left(n+1\right)+2\left(n+1\right)\right]\)

                                             \(=n^2\left(n+1\right)\left(n^3-n^2+2\right)=n^2\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\)

                                             \(=n^2\left(n+1\right)\left[\left(n+1\right)\left(n^2-n+1\right)-\left(n+1\right)\left(n-1\right)\right]\)

                                        \(P=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)

Với \(n\in N;\)  \(n>1\), ta có:

  \(n^2-2n+2=\left(n-1\right)^2+1>\left(n-1\right)^2\)

  và  \(n^2>n^2-2\left(n-1\right)=n^2-2n+2\)  

Theo đó,    \(n^2>n^2-2n+2>\left(n-1\right)^2\)

Mặt khác, \(\left(n-1\right)^2\)  và  \(n^2\)  là hai số chính phương liên tiếp

Do đó,    \(n^2-2n+2\)  không thể là một số chính phương.

Vậy,  \(P\)  không là số chính phương với mọi  \(n\in N;\)  và  \(n>1\)

27 tháng 3 2016

3)+giả sử aabb=n^2 
<=>a.10^3+a.10^2+b.10+b=n^2 
<=>11(100a+b)=n^2 
=>n^2 chia hết cho 11 
=>n chia hết cho 11 
do n^2 có 4 chữ số nên 
32<n<100 
=>n=33,n=44,n=55,...n=99 
thử vào thì n=88 là thỏa mãn 
vậy số đó là 7744

27 tháng 3 2016

2)

a

v

à

b

l

n

ê

n

a

=

2k+1,

b

=

2m+1

(V

i

k,

m

N)

a

2

+

b

2

=

(2k+1)

2

+

(2m+1)

2

=

4k

2

+

4k

+

1

+

4m

2

+

4m

+

1

=

4(k

2

+

k

+

m

2

+

m)

+

2

=

4t

+

2

(V

i

t

N)

Kh

ô

ng

c

ó

s

ch

í

nh

ph

ươ

ng

n

à

o

c

ó

d

ng

4t

+

2

(t

N)

do

đó

a

2

+

b

2

kh

ô

ng

th

l

à

s

ch

í

nh

ph

ươ

ng

31 tháng 3 2016

Ta có : A = n2(n2 +2n + 1) + ( n2 + 2n + 1) = (n2+1).(n+1)2
Vì n2 + 1 không phải là số chính phương nên A không phải là số chính phương.

3 tháng 2 2017

n lẻ nên n^3 lẻ. vậy n^3+1 chẵn. mà số chính phương chỉ có 2 là chẵn, còn lại lẻ ->đpcm

3 tháng 2 2017

n có dạng 2k+1
n3+1 = (2k+1)3+1 = 8k3+12k2+6k+1+1=8k3+12k2+6k+2
Vì 8k3;6k và 2 không thể là số chính phương nên suy ra n3+1 không là số chính phương khi n lẻ.