\(1!+2!+3!+......+n!\)không là số chính phương 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2017

Nếu n=4 thì: \(1!+2!+3!+4!=33.\) không là số chính phương.

Nếu n>4 thì ta luôn có n! tận cùng bằng 0 (vì có tích 2*5).

\(\Rightarrow1!+2!+3!+...+n!\) có tận cùng là 3 ko là số chính phương.

Vậy ...

22 tháng 3 2017

nnnnnnnnnnnnnnnnmnnnnnnnnnnnnnnnnnnnnnnnnnnnnn=4

28 tháng 3 2017

mình chịu thôi vì mình mới học lớp 5

24 tháng 1 2019

Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

Đặt : \(n^2+3n=k\)\(\Rightarrow A=k\left(k+2\right)=k^2+2k\)

Ta có : \(\left(k+1\right)^2=\left(k+1\right)\left(k+1\right)\)

\(=k\left(k+1\right)+1\left(k+1\right)\)

\(=k^2+k+k+1=k^2+2k+1\)

Do : \(n\inℕ^∗\Rightarrow n^2+3n>0\)hay : \(k>0\)

\(\Rightarrow k^2+2k>k^2\)

Ta có : \(k^2< k^2+2k< k^2+2k+1\)

hay : \(k^2< k^2+2k< \left(k+1\right)^2\)

Do : \(k^2\)và \(\left(k+1\right)^2\)là hai số chính phương liên tiếp

\(\Rightarrow k^2+2k\)không phải là số chính phương

24 tháng 1 2019

\(Giai\)

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

\(\text{Đặt:n2+3n=t}\)

\(A=t\left(t+2\right)=\left(t+1\right)^2-1\)

Đến đây cậu đã làm được chưa ạ?

16 tháng 2 2019

Đề sai thế n =  1 thì

\(\left(1-1\right)^2< 1< \left(1+1\right)^2\)

16 tháng 2 2019

Giả sử n là số chính phương 

vì: n là số nguyên >1 và \(\left(n-1\right)^2< n< \left(n+1\right)^2\)

nên: n=n^2.\(\Rightarrow n^2-n=0\Leftrightarrow n\left(n-1\right)=0\Leftrightarrow\orbr{\begin{cases}n-1=0\\n=0\end{cases}}\)

Mà: n>1 nên: n-1>0 

và n>0 (vô lí) vậy n ko là số chính phương

17 tháng 10 2015

13 + 23 + ... + n3 = ( 1 + 2 + ... + n )2

=> 13 + 2+ ... + n3 là số chính phương

27 tháng 10 2016

Giả sử f(n) là số chính phương với mọi n nguyên dương

Đặt \(f\left(n\right)=n^3+On^2+Ln+M\)

Suy ra \(f\left(1\right)=1+O+L+M\);\(f\left(2\right)=8+4O+2L+M\);\(f\left(3\right)=27+9O+3L+M\);\(f\left(4\right)=64+16O+4L+O\) đều là số chính phương.

\(f\left(4\right)-f\left(2\right)\equiv2L\left(mod4\right)\)\(f\left(4\right)-f\left(2\right)\equiv0,1,-1\left(mod4\right)\)(do \(f\left(4\right),f\left(2\right)\)đều là số chính phương)

Do đó= \(2L\equiv0\left(mod4\right)\)

Suy ra \(2L+2\equiv2\left(mod4\right)\)

Mặt khác \(f\left(3\right)-f\left(1\right)\equiv2L+2\left(mod4\right)\)

=>Mâu thuẫn với điều giả sử (do \(f\left(3\right)-f\left(1\right)\equiv0,1,-1\left(mod4\right)\))

=>Đpcm

Vậy luôn tồn tại n nguyên dương sao cho \(f\left(n\right)=n^3+On^2+Ln+M\)không phải là số chính phương.

 

22 tháng 3 2017

n sẽ bằng 2

6 tháng 3 2020

\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)

\(=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+\left(1-\frac{1}{4^2}\right)+...+\left(1-\frac{1}{n^2}\right)\)

\(=\left(n-1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< n-1\)

Ta có \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(=1-\frac{1}{n}\)

\(\Rightarrow\left(n-1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \left(n-1\right)-\left(1-\frac{1}{n}\right)\)> n - 2

Vậy S không là số tự nhiên