Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{\sqrt{n}.\sqrt{n+1}.\left(\sqrt{n+1}+\sqrt{n}\right)}=\dfrac{1}{\sqrt{n}.\sqrt{n+1}}.\dfrac{1}{\sqrt{n+1}+\sqrt{n}}=\dfrac{1}{\sqrt{n}.\sqrt{n+1}}.\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\dfrac{1}{\sqrt{n}.\sqrt{n+1}}.\left(\sqrt{n+1}-\sqrt{n}\right)=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}\)
\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)
\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
Do đó:
\(VT=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
\(VT=1-\dfrac{1}{\sqrt{n+1}}< 1\) (đpcm)
Ta có : \(\dfrac{1}{\left(n+1\right)\sqrt{n}}=\dfrac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\dfrac{1}{n}-\dfrac{1}{n+1}\right)=\sqrt{n}\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\left(\dfrac{1}{\sqrt{n}}+\dfrac{1}{\sqrt{n+1}}\right)=\left(1+\dfrac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)< 2\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)
Áp dụng điều này vào bài toán , ta có :
\(\left\{{}\begin{matrix}\dfrac{1}{2\sqrt{1}}< 2\left(1-\dfrac{1}{\sqrt{2}}\right)=2-\sqrt{2}\\\dfrac{1}{3\sqrt{2}}< 2\left(\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}\right)=\sqrt{2}-\dfrac{2}{\sqrt{3}}\\....\\\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)=\dfrac{2}{\sqrt{n}}-\dfrac{2}{\sqrt{n+1}}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{2\sqrt{1}}+\dfrac{1}{2\sqrt{3}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2-\dfrac{2}{\sqrt{n+1}}< 2\) ( Sửa đề ^-^ )