Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(n+1)(n+2)(n+3)....2n ( 1 )
Dễ thấy ( 1 ) đúng với n = 2
giả sử bất đẳng thức đúng với n = k nghĩa là (k+1)(k+2)(k+3)...2k > 2k
Ta chứng minh BĐT đúng với n = k+1
\(\Rightarrow\)( k + 2 )(k+3)(k+4)...2(k+1) > 2k+1
Thật vậy, theo giả thiết quy nạp,ta có :
(k+1)(k+2)(k+3)...2k > 2k
\(\Rightarrow\)(k+1)(k+2)(k+3)...2k(2k+1) > 2k
\(\Rightarrow\)2(k+1)(k+2)(k+3)...2k(2k+1) > 2k+1
\(\Rightarrow\)(k+2)(k+3)...2k(2k+1)(2k+2) > 2k+1
Vậy BĐT ( 1 ) đúng với mọi n > 1 hay .....
Bài 1:
$5a+8b\vdots 3$
$\Leftrightarrow 5a+8b-3(2b+2a)\vdots 3$
$\Leftrightarrow 5a+8b-6b-6a\vdots 3$
$\Leftrightarrow 2b-a\vdots 3$
Ta có đpcm.
Bài 2. Bổ sung thêm điều kiện $n$ là số tự nhiên.
Ta có: $A=n(2n+7)(7n+7)=7n(2n+7)(n+1)$
Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên sẽ tồn tại 1 số chẵn và 1 số lẻ
$\Rightarrow n(n+1)\vdots 2$
$\Rightarrow A=7n(n+1)(2n+7)\vdots 2(1)$
Mặt khác:
Nếu $n\vdots 3$ thì $A=7n(n+1)(2n+7)\vdots 3$
Nếu $n$ chia $3$ dư $1$ thì $2n+7$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Tóm lại $A\vdots 3(2)$
Từ $(1);(2)$ mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$
Ta có: số chẵn chia hết cho 2
Nếu n là số lẻ thì (n+3)(n+6) = (chẵn)(lẻ) nên chia hết cho 2
Nếu n là số chẵn thì (n+3)(n+6)=(lẻ)(chẳn) nên chia hết cho 2
Vậy với mọi n thuộc N thì tích đều chia hết cho
Ta có: số chẵn chia hết cho 2
Nếu n là số lẻ thì (n+3)(n+6) = (chẵn)(lẻ) nên chia hết cho 2
Nếu n là số chẵn thì (n+3)(n+6)=(lẻ)(chẳn) nên chia hết cho 2
Vậy với mọi n thuộc N thì tích đều chia hết cho
th1 nếu n là số lẻ thì suy ra n+3 là số lẻ còn n+6 là số chẵn
ta có lẻ.chẵn=chẵn mà các số chẵn chia hết cho 2 Suy ra (n+3).(n+6) chia hết cho 2
th2 nếu n là số chẵn suy ra n+3 là số lẻ còn n+6 là số chẵn
ta có lẻ,chẵn=chẵn mà các số chẵn chia hết cho 2. Suy ra (n+3).(n+6) chia hết cho 2
Suy ra (n+3)(n+6) chia hết cho 2
th1 nếu n là số lẻ thì suy ra n+3 là số lẻ còn n+6 là số chẵn
ta có lẻ.chẵn=chẵn mà các số chẵn chia hết cho 2 Suy ra (n+3).(n+6) chia hết cho 2
th2 nếu n là số chẵn suy ra n+3 là số lẻ còn n+6 là số chẵn
ta có lẻ,chẵn=chẵn mà các số chẵn chia hết cho 2. Suy ra (n+3).(n+6) chia hết cho 2
Suy ra (n+3)(n+6) chia hết cho
:3
1) trường hợp 1: chia 3 dư 0
-> chia hết cho 3
trường hợp 2 : chia 3 dư 1 -> n=3k+1
(3k+1)(3k+3)(3k+4 )
3(3k+1)(k+1)(3k+4) chia hết cho3
trường hơp 3; chia 3 dư hai-> n=3k+2
(3k+3)(3k+4)(3k+5)=3(k+1)(3k+4)(3k+5) chia hết cho 3
( ban kiem tra de dung khong 3 so tn lien tiep mới dc : (n+1)(n+2)(n+3)
câu 1 sai đề
Vì n(n+2)(n+3) = 3n+2+3 = 3n+5
3n chia hết cho 3 mà 5 ko chia hết cho 3
Suy ra với mọi STN n thì n(n+2)(n+3) ko chia hết cho 3
a, Ta có : 9 đồng dư với 1 (mod 4 ) => 9n đồng dư với 1 ( mod 4)
=> 9n+1 đồng dư với 2 (mod 4) ko chia hết cho 4 => 9n+1 ko chia hết cho 100 (vì 100 chia hết cho 4)
b, Gỉa sử n chia hết cho 3
=> n2+n+1 chia 3 dư 1.
Nếu n chia 3 dư 1
=> n2 đồng dư với 1 mod 3 => n2+n+1 chia hết cho 3
Nếu n chia 3 dư 2
=> n2 chia 3 dư 1 => n2+n+1 chia 3 dư 1.
Suy ra n chia 3 dư 1 để n2+n+1 chia hết cho 5
=> n2+n có tận cùng là 4 hoặc 9 mà hai số liên tiếp nhân nhau ko có tận cùng là 4 hoặc 9
=> n2 + n+1 ko chia hết cho 15.
thấy sai thì góp ý nha
Với n=2k thì (2k+1993^1994)(2k+1994^1993) chia hết cho 2 vì thừa số 2k+1994^1993 có 2k chia hết cho 2, 1994^1993 chia hết cho 2 (Vì 1994 chia hết cho 2)
Với n=2k+1 thì (2k+1993^1994+1)(2k+1+1994^1993) chia hết cho 2 vì thừa số 2k+1993^1994+1 có 1993^1994 lẻ, 1 lẻ nên 1993^1994+1 chẵn => 2k+1993^1994+1 chia hết cho 2.
Từ các điều trên ta có đpcm