\(m^2-n^2\)) chia hết cho 6

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2016

Ta biến đổi như sau : \(mn\left(m^2-n^2\right)=mn\left[\left(m^2-1\right)-\left(n^2-1\right)\right]=mn\left[\left(m-1\right)\left(m+1\right)-\left(n-1\right)\left(n+1\right)\right]\)

\(=n.\left(m-1\right).m.\left(m+1\right)-m.\left(n-1\right).n.\left(n+1\right)\)

Vì \(\left(m-1\right).m.\left(m+1\right)\) và \(\left(n-1\right).n.\left(n+1\right)\) là các tích của ba số nguyên liên tiếp

nên chia hết cho cả 2 và 3 . Mà \(\left(2,3\right)=1\) nên các tích này chia hết cho 6.

Từ đó suy ra điều phải chứng minh :)

23 tháng 11 2016

Ta có 

A = mn(m2 - n2) = mn(m - n)(m + n)

Ta chứng minh A chia hết cho 2

Với m,n có 1 số chẵn thì A chia hết cho 2

Với m,n đều là lẻ thì (m - n) chia hết cho 2

=> A chia hết cho 2 (1)

Chứng minh chia hết cho 3

Với m,n có 1 số chia hết cho 3 thì  A chia hết cho 3

Với m,n cùng chia 3 dư 1 hoặc dư 2 thì (m - n) chia hết cho 3

Với m chia 3 dư 1 n chia 3 dư 2 (hoặc ngược lại thì (m + n) chia hết cho 3

=> A chia hết cho 3 (2)

Từ  (1) và (2) kết hợp với 2 va 3 nguyên tố cùng nhau thì ta có A chia hết cho 6

28 tháng 11 2018

đố bạn làm được câu này cho m thuộc N. cmr 5m^3+40m chia hết cho 15

19 tháng 8 2016

Vì 6 chia hết cho thừa số nguyên tố 2 và 3.

Khi xn chia hết cho số nguyên tố d thì x chia hết cho d

Trong trường hợp thì hết cho 6 thì cũng chia hết cho số nguyên tố 2 và 3

nên mình nghĩ là đúng

Trong trường hợp chia hết cho 1 số chính phương thì chưa chắc đã đúng

19 tháng 8 2016

đúng b nhé

15 tháng 1 2018

M = [(n+1)^2+4]^2-(n+1)2+2012

Đặt (n+1)^2 = a ( a >= 0 )

Khi đó : 

M = (a+4)^2-a+2012

    = a^2+8a+16-a+2012

    = a^2+7a+2028

    = a^2+a+6a+2028

Xét : a^2+a = (n^2+2n+1)^2-(n^2+2n+1) = (n^2+2n+1).(n^2+2n) = n.(n+1)^2.(n+2)

Ta thấy n;n+1;n+2 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3

=> a^2+a chia hết cho 6

Mà 6a và 2028 đều chia hết cho 6

=> M chia hết cho 6

Tk mk nha

16 tháng 8 2018

8 phút trước (09:39)

Bạn có muốn biết nơi nào bạn sẽ vừa HỌC vừa KIẾM TIỀN được không?

BÀI TẬP KHÓ?
CÓ ALFAZI
Năm học mới rồi, các bạn bè các anh chị hỗ trợ bài tập, hướng dẫn học tập, cuối năm đạt kết quả tốt? ✅Bạn không có ai để làm điều đó
Truy cập: https://alfazi.edu.vn để trao đổi bài tập, chia sẻ tài liệu và tham gia hoạt động bổ ích cho học sinh, sinh viên nhé!
Đặc biệt, khi bạn tham gia giải đáp bài tập, bạn sẽ nhận được “phụ cấp” siêu khủng từ Web!
Một web học tập rất thân thiện, môi trường học tập cực tốt, Các bạn đừng bỏ phí cơ hội này nhé!
Web rất hân hạnh được đón tiếp những tài năng tương lai của đất nước!
❤️❤️😘😘😘Love you💋💋

TRUY CẬP HTTPS://ALFAZI.EDU.VN ĐỂ NHẬN 20.000 SAU KHI ĐĂNG KÍ!

NV
19 tháng 11 2018

\(4\left(m+n\right)^2-mn⋮15^2\Rightarrow4\left(4\left(m+n\right)^2-mn\right)⋮15^2\)

\(\Rightarrow16\left(m+n\right)^2-4mn⋮15^2\Rightarrow15\left(m+n\right)^2+\left(m-n\right)^2⋮15^2\Rightarrow15\left(m+n\right)^2+\left(m-n\right)^2⋮15\)

\(15\left(m+n\right)^2⋮15\Rightarrow\left(m-n\right)^2⋮15\Rightarrow\left\{{}\begin{matrix}\left(m-n\right)^2⋮3\\\left(m-n\right)^2⋮5\end{matrix}\right.\)

Do 3 và 5 là số nguyên tố \(\Rightarrow\left\{{}\begin{matrix}m-n⋮3\\m-n⋮5\end{matrix}\right.\) \(\Rightarrow m-n⋮15\Rightarrow\left(m-n\right)^2⋮15^2\)

\(\Rightarrow15\left(m+n\right)^2⋮15^2\Rightarrow\left(m+n\right)^2⋮15\Rightarrow\left\{{}\begin{matrix}\left(m+n\right)^2⋮3\\\left(m+n\right)^2⋮5\end{matrix}\right.\)

Mà 3; 5 là số nguyên tố \(\Rightarrow\left\{{}\begin{matrix}m+n⋮3\\m+n⋮5\end{matrix}\right.\) \(\Rightarrow m+n⋮15\Rightarrow\left(m+n\right)^2⋮15^2\)

Áp dụng kết quả này vào điều kiện ban đầu: \(4\left(m+n\right)^2-mn⋮15^2\) , mà ta \(\left(m+n\right)^2⋮15^2\) \(\Rightarrow mn⋮15^2\)

19 tháng 11 2018

Akai Haruma

Cô giúp em với ạ!!!!