Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình đổi lại đề xíu:
M = 3n+3 + 3n+1 + 2n+3 + 2n+2
= 3n+1(32+1) + 2n+2(2+1)
= 3n+1.2.5 + 2n+2.3
= 3.2.5.3n + 2.3.2n+1
= 6.(3n.5 + 2n+1) \(⋮\) 6
Ta có : Số số hạng của dãy số D chính là khoảng cách từ 1-->100 , mỗi số cách nhau 1 đơn vị .
=> Số số hạng của dãy số D là : \(\frac{100-1}{1}+1=100\) ( số hạng )
Vậy ta có số nhóm là : 100 : 2 = 50 ( nhóm )
\(D=\left(6+6^2\right)+\left(6^3+6^4\right)+...+\left(6^{99}+6^{100}\right)\)
\(D=\left(6+6^2\right)+6^2\left(6+6^2\right)+...+6^{98}\left(6+6^2\right)\)
\(D=1.42+6^2.42+...+6^{98}.42\)
\(D=\left(1+6^2+...+6^{98}\right).42\)
Vì : 42 = 6 . 7 . Mà : \(1+6^2+...+6^{98}\in N\) \(\Rightarrow D⋮7\)
Vậy : \(D⋮7\)
b, \(E=3^{n+3}+2^{n+3}+3^{n+1}+2^{n+2}\)
\(E=3^n.3^3+2^n.2^3+3^n.3+2^n.2^2\)
\(E=3^n.3^3+3^n.3+2^n.2^3+2^n.2^2\)
\(E=3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)
\(E=3^n.30+2^n.12\)
\(E=3^n.5.6+2^n.2.6\)
\(E=\left(3^n.5+2^n.2\right).6\)
Mà : \(3^n.5+2^n.2\in N\Rightarrow E⋮6\)
Vậy : \(E⋮6\)
a)D=6+62+63+...+699+6100
D=(6+62)+(63+64)+...+(699+6100)
D=42.1+62..42+...+698.42
D=42.(1+62+...+698)\(⋮\)7
\(\Rightarrow\)D\(⋮\)7
a, Ta có : \(7^6+7^5-7^4\)
\(=7^4.7^2+7^4.7+7^4.1=7^4.49+7^4.7+7^4.1\)
\(=7^4.\left(49+7-1\right)\)
\(=7^4.55\) \(⋮\) \(55\) (vì \(55⋮55\))
Vậy \(7^6+7^5-7^4⋮55\)
b, Ta có : \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.3^2-2^n.2^2+3^n-2^n\)
\(=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)
\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)
\(=3^n.\left(9+1\right)-2^n.\left(4+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.2.5-2^{n-1}.2.5\)
\(=2.5.\left(3^n-2^{n-1}\right)\) chia hết cho 2 và 5( vì \(2⋮2\) ; \(5⋮5\) )
Vậy \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 2 và 5
Ta có: 3n+3+3n+1+2n+3+2n+2
=3n.33+3n.3+2n.23+2n.22
=3n.27+3n.3+2n.8+2n.4
=(3n.27+3n.3)+(2n.8+2n.4)
=3n.(27+3)+2n.(8+2)
=3n.30+2n.12
=3n.5.6+2n.2.6
=(3n.5+2n.2).6 chia hết cho 6
=>3n+3+3n+1+2n+3+2n+2 chia hết cho 6
=>ĐPCM
3n+3+3n+1+2n+3+2n+2
=3n+1(32+1)+2n+2(2+1)
=3n+1.10 +2n+2.3
Do 3n+1 chia hết cho 3
10 chia hết cho 2
=>3n+1.10 chia hết cho 6(1)
2n+2 chia hết cho 2
3 chia hết cho 3
=>2n+2.3 chia hết cho 6(2)
Từ 1 và 2 =>3n+1.10 +2n+2.3 chia hết cho 6=>đpcm
Bài 1:
b) Ta có:
\(16^5=2^{20}\)
\(\Rightarrow B=16^5+2^{15}=2^{20}+2^{15}\)
\(\Rightarrow B=2^{15}.2^5+2^{15}\)
\(\Rightarrow B=2^{15}\left(2^5+1\right)\)
\(\Rightarrow B=2^{15}.33\)
\(\Rightarrow B⋮33\) (Đpcm)
c) \(C=5+5^2+5^3+5^4+...+5^{100}\)
\(\Rightarrow C=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(\Rightarrow C=1\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{98}\left(5+5^2\right)\)
\(\Rightarrow\left(1+5^2+...+5^{98}\right)\left(5+5^2\right)\)
\(\Rightarrow C=Q.30\)
\(\Rightarrow C⋮30\) (Đpcm)
Bài 1 : a, \(A=1+3+3^2+...+3^{118}+3^{119}\)
\(A=\left(1+3+3^2+3^3\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)
\(A=\left(1+3+3^2+3^3\right)+...+3^{116}\left(1+3+3^2+3^3\right)\)
\(A=1.30+...+3^{116}.30=\left(1+...+3^{116}\right).30⋮3\)
Vậy \(A⋮3\)
b, \(B=16^5+2^{15}=\left(2.8\right)^5+2^{15}\)
\(=2^5.8^5+2^{15}=2^5.\left(2^3\right)^5+2^{15}\)
\(=2^5.2^{15}+2^{15}.1=2^{15}\left(32+1\right)=2^{15}.33⋮33\)
Vậy \(B⋮33\)
c, Tương tự câu a nhưng nhóm 2 số
Bài 2 : a, \(n+2⋮n-1\) ; Mà : \(n-1⋮n-1\)
\(\Rightarrow\left(n+2\right)-\left(n-1\right)⋮n-1\)
\(\Rightarrow n+2-n+1⋮n-1\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\in\left\{1;3\right\}\Rightarrow n\in\left\{2;4\right\}\)
Vậy \(n\in\left\{2;4\right\}\) thỏa mãn đề bài
b, \(2n+7⋮n+1\)
Mà : \(n+1⋮n+1\Rightarrow2\left(n+1\right)⋮n+1\Rightarrow2n+2⋮n+1\)
\(\Rightarrow\left(2n+7\right)-\left(2n+2\right)⋮n+1\)
\(\Rightarrow2n+7-2n-2⋮n+1\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\in\left\{1;5\right\}\Rightarrow n\in\left\{0;4\right\}\)
Vậy \(n\in\left\{0;4\right\}\) thỏa mãn đề bài
c, tương tự phần b
d, Vì : \(4n+3⋮2n+6\)
Mà : \(2n+6⋮2n+6\Rightarrow2\left(2n+6\right)⋮2n+6\Rightarrow4n+12⋮2n+6\)
\(\Rightarrow\left(4n+12\right)-\left(4n+3\right)⋮2n+6\)
\(\Rightarrow4n+12-4n-3⋮2n+6\Rightarrow9⋮2n+6\)
\(\Rightarrow2n+6\in\left\{1;2;9\right\}\Rightarrow2n=3\Rightarrow n\in\varnothing\)
Vậy \(n\in\varnothing\)