![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có a^3+5a= a^3-a+6a
= a(a^2-1)+6a
= a(a-1)(a+1)+6a
vì với a thuộc z thì a, a-1,a+1 là 3 số nguyên liên tiếp nên trong 3 số có 1 số chia hết cho 3 và ít nhất 1 số chia hết cho 2
=> a(a-1)(a+1) chia hết cho 2 và 3
mà (2;3)=1 nên a(a-1)(a+1) chia hết cho 6
lại có 6a chia hết cho 6 với mọi a thuộc z
=> a(a-1)(a+1) +6a chia hết cho 6
hay a^3+5a chia hết cho 6
cm bằng qui nạp
thử n=1 ta có n^3+5n = 6 => dúng
giả sử đúng với n =k
ta cm đúng với n= k+1
(k+1)^3+5(k+1) = k^3 +5k + 3k^2 +3k +6
vì k^3 +5k chia hết cho 6, và 6 chia hết cho 6 nên ta cần cm 3k^2 +3k chia hết cho 6 <=> k^2 +k chia hết cho 2
mà k(k +1) chia hết cho 2vì nếu k lẻ thì k+1 chẳn => chia hết
nế k chẳn thì đương nhiên chia hết
vậy đúng n= k+ 1
theo nguyên lý qui nạp ta có điều phải chứng minh
![](https://rs.olm.vn/images/avt/0.png?1311)
a3 + b3 + c3 + 5a + 5b + 5c
= a3 - a + b3 - b + c3 - c + 6a + 6b + 6c
= a(a2 - 1) + b(b2 - 1) + c(c2 - 1) + 6a + 6b + 6c
= a(a - 1)(a + 1) + b(b - 1)(b + 1) + c(c - 1)(c + 1) + 6(a + b + c)
a;b;c \(\in Z\) nên a(a - 1)(a + 1); b(b - 1)(b + 1); c(c - 1)(c + 1) là tích 3 số nguyên liên tiếp
=> a(a - 1)(a + 1); b(b - 1)(b + 1); c(c - 1)(c + 1) chia hết cho 3
Mà 6(a + b + c) chia hết cho 6
Do đó a(a - 1)(a + 1) + b(b - 1)(b + 1) + c(c - 1)(c + 1) + 6(a + b + c) chia hết cho 6
hay a3 + b3 + c3 + 5a + 5b + 5c chia hết cho 6 (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Ta có:
\(b^2+c^2-a^2+2bc=(b^2+2bc+c^2)-a^2\)
\(=(b+c)^2-a^2=(2p-a)^2-a^2\) (do \(a+b+c=2p\) )
\(=4p^2-4pa+a^2-a^2=4p^2-4pa=4p(p-a)\)
Do đó ta có đpcm.
Bài 2:
Dấu \(\Leftrightarrow \) thể hiện bài toán đúng trong cả 2 chiều.
Ta có: \(5a+2b\vdots 17\)
\(\Leftrightarrow 2(5a+2b)\vdots 17\)
\(\Leftrightarrow 10a+4b\vdots 17\)
\(\Leftrightarrow 10a+4b+17a+17b\vdots 17\)
\(\Leftrightarrow 27a+21b\vdots 17\)
\(\Leftrightarrow 3(9a+7b)\vdots 17\)
\(\Leftrightarrow 9a+7b\vdots 17\) (do 3 và 17 nguyên tố cùng nhau)
Ta có đpcm.
![](https://rs.olm.vn/images/avt/0.png?1311)
A = a3 - a
A = a.(a2 - 1)
A = a.(a-1).(a+1)
A = (a-1).a.(a+1)
Vì (a-1).a.(a+1) là tích 3 số tự nhiên liên tiếp nên (a-1).a.(a+1) chia hết cho 2 và 3
Do (2,3) = 1 => (a-1).a.(a+1) chia hết cho 6 => A chia hết cho 6
Câu A lm đc thì các câu B,C,D trở nên rất đơn giản
B = a3 - a + 6a
Do a3 - a chia hết cho 6, 6a chia hết cho 6
=> B chia hết cho 6
C = a3 + 11a
C = a3 - a + 12a
Do a3 - a chia hết cho 6, 12a chia hết cho 6
=> C chia hết cho 6
D = a3 - 19a
D = a3 - a - 18a
Do a3 - a chia hết cho 6, 18a chia hết cho 6
=> D chia hết cho 6
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(mn\left(m^2-n^2\right)=mn\left[\left(m^2-1\right)-\left(n^2-1\right)\right]\)
\(=mn\left(m^2-1\right)-mn\left(n^2-1\right)\)
\(=\left(m-1\right)m\left(m+1\right)n-\left(n-1\right)n\left(n+1\right)m\)
Vì tích 3 số nguyên liên tiếp luôn chia hết cho 3 nên \(\hept{\begin{cases}\left(m-1\right)m\left(m+1\right)⋮3\\\left(n-1\right)n\left(n+1\right)⋮3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m-1\right)m\left(m+1\right)n⋮3\\\left(n-1\right)n\left(n+1\right)m⋮3\end{cases}}\)
\(\Rightarrow\left(m-1\right)m\left(m+1\right)n-\left(n-1\right)n\left(n+1\right)m⋮3\)
Vậy \(mn\left(m^2-n^2\right)⋮3\left(đpcm\right)\)
b) \(n\left(n+1\right)\left(2n+1\right)=n\left(n+1\right)\left(n+2+n-1\right)\)
\(=n\left(n+1\right)\left(n+2\right)+\left(n-1\right)n\left(n+1\right)\)
Vì tích 3 số nguyên liên tiếp thì chia hết cho 3 và có ít nhất 1 số chẵn nên chia hết cho 6
\(\Rightarrow\hept{\begin{cases}n\left(n+1\right)\left(n+2\right)⋮6\\\left(n-1\right)n\left(n+1\right)⋮6\end{cases}}\)
\(\Rightarrow n\left(n+1\right)\left(n+2\right)+\left(n-1\right)n\left(n+1\right)⋮6\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
chết lộn
làm lại này
\(a^3+5a\Rightarrow1.a^3+5a\)
=> \(a^2\left(a5+1\right)\Rightarrow a^2\left(a6\right)\Rightarrow a^2\left(a6\right)⋮6\)
Câu kia, sai nhé
thêm đk \(a\in Z\)
\(M=a^3-a+6a\)
\(\Rightarrow M=a\left(a^2-1\right)+6a\)
\(\Rightarrow M=\left(a-1\right)a\left(a+1\right)+6a\)
+ \(\left(a-1\right)a\left(a+1\right)\) là tích 3 số nguyên liên tiếp
\(\Rightarrow\left\{{}\begin{matrix}\left(a-1\right)a\left(a+1\right)⋮2\\\left(a-1\right)a\left(a+1\right)⋮3\end{matrix}\right.\)
\(\Rightarrow\left(a-1\right)a\left(a+1\right)⋮6\)
\(\Rightarrow\left(a-1\right)a\left(a+1\right)+6a⋮6\)
\(\Rightarrow M⋮6\)