\(lim\frac{a^n}{n!}=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 4 2020

\(lim\left(u_n\right)=lim\left(\frac{n}{n^2+1}\right)=lim\left(\frac{\frac{1}{n}}{1+\frac{1}{n^2}}\right)=\frac{0}{1}=0\)

b/

\(-1\le cos\frac{\pi}{n}\le1\Rightarrow-\frac{n}{n^2+1}\le v_n\le\frac{n}{n^2+1}\)

\(lim\left(-\frac{n}{n^2+1}\right)=lim\left(\frac{n}{n^2+1}\right)=0\)

\(\Rightarrow lim\left(v_n\right)=0\)

23 tháng 1 2020

Câu 1.

\(y = \dfrac{{n + \sin 2n}}{{n + 5}} = \dfrac{{\dfrac{n}{n} + \dfrac{{\sin 2n}}{n}}}{{\dfrac{n}{n} + \dfrac{5}{n}}} = \dfrac{{1 + \dfrac{{2.\sin 2n}}{{2n}}}}{{1 + \dfrac{5}{n}}}\\ \Rightarrow \lim y = \dfrac{{1 + 0}}{{1 + 0}} = 1 \)

23 tháng 1 2020

Câu 2.

\(\lim \dfrac{{3\sin n + 4\cos n}}{{n + 1}}\)

\( - 1 \le \sin n \le 1; - 1 \le \cos n \le 1 \Rightarrow \) khi \(x \to \infty \) thì \(3\sin n + 4{\mathop{\rm cosn}\nolimits} = const \)

\(\Rightarrow T = \lim \dfrac{{3\sin n + 4\cos n}}{{n + 1}} = 0 \)

Chú thích: $const$ là kí hiệu hằng số, giống như dạng giới hạn L/vô cùng.

NV
15 tháng 5 2019

\(\lim\limits_{x\rightarrow-\infty}\frac{-x\sqrt{4x^2+3}}{2x-1}=\lim\limits_{x\rightarrow-\infty}\frac{x\sqrt{4+\frac{3}{x^2}}}{2-\frac{1}{x}}=-\infty\)

\(lim\frac{\sqrt{n}}{\sqrt{n+4}+\sqrt{n+3}}=lim\frac{1}{\sqrt{1+\frac{4}{n}}+\sqrt{1+\frac{3}{n}}}=\frac{1}{2}\)

\(lim\left(\frac{\left(n-2\right)^2-\left(3n^2+n-1\right)}{n-2+\sqrt{3n^2+n-1}}\right)=lim\frac{-2n^2-5n+5}{n-2+\sqrt{3n^2+n-1}}=lim\frac{-2n+5+\frac{5}{n}}{1-\frac{2}{n}+\sqrt{3+\frac{1}{n}-\frac{1}{n^2}}}=-\infty\)

\(\lim\limits_{x\rightarrow0}\frac{\left(x^3-2x+1\right)^{\frac{1}{3}}-1}{x^2+2x}=\lim\limits_{x\rightarrow0}\frac{\frac{1}{3}\left(3x-2\right)\left(x^3-2x+1\right)^{-\frac{2}{3}}}{2x+2}=-\frac{1}{3}\)

NV
19 tháng 2 2020

a/ \(=lim\frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\infty}=0\)

b/ \(=lim\frac{6n+1}{\sqrt{n^2+5n+1}+\sqrt{n^2-n}}=\frac{6+\frac{1}{n}}{\sqrt{1+\frac{5}{n}+\frac{1}{n^2}}+\sqrt{1-\frac{1}{n}}}=\frac{6}{1+1}=3\)

c/ \(=lim\frac{6n-9}{\sqrt{3n^2+2n-1}+\sqrt{3n^2-4n+8}}=lim\frac{6-\frac{9}{n}}{\sqrt{3+\frac{2}{n}-\frac{1}{n^2}}+\sqrt{3-\frac{4}{n}+\frac{8}{n^2}}}=\frac{6}{\sqrt{3}+\sqrt{3}}=\sqrt{3}\)

d/ \(=lim\frac{\left(\frac{2}{6}\right)^n+1-4\left(\frac{4}{6}\right)^n}{\left(\frac{3}{6}\right)^n+6}=\frac{1}{6}\)

NV
19 tháng 2 2020

e/ \(=lim\frac{\left(\frac{3}{5}\right)^n-\left(\frac{4}{5}\right)^n+1}{\left(\frac{3}{5}\right)^n+\left(\frac{4}{5}\right)^n-1}=\frac{1}{-1}=-1\)

f/ Ta có công thức:

\(1+3+...+\left(2n+1\right)^2=\left(n+1\right)^2\)

\(\Rightarrow lim\frac{1+3+...+2n+1}{3n^2+4}=lim\frac{\left(n+1\right)^2}{3n^2+4}=lim\frac{\left(1+\frac{1}{n}\right)^2}{3+\frac{4}{n^2}}=\frac{1}{3}\)

g/ \(=lim\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\right)=lim\left(1-\frac{1}{n+1}\right)=1-0=1\)

h/ Ta có: \(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

\(\Rightarrow lim\frac{n\left(n+1\right)\left(2n+1\right)}{6n\left(n+1\right)\left(n+2\right)}=lim\frac{2n+1}{6n+12}=lim\frac{2+\frac{1}{n}}{6+\frac{12}{n}}=\frac{2}{6}=\frac{1}{3}\)

NV
22 tháng 2 2020

\(=lim\frac{3+\frac{2}{n}+\frac{5}{n^2}}{7+\frac{1}{n}-\frac{8}{n^2}}=\frac{3}{7}\)

\(=lim-3n^3\left(1-\frac{5}{3n^2}+\frac{2}{3n^3}\right)=-\infty\)

\(=lim\frac{\left(\frac{3}{7}\right)^n+4}{3-2.\left(\frac{1}{7}\right)^n}=\frac{4}{3}\)

Câu này đề thiếu, giới hạn của x nên nó là giới hạn của hàm chứ ko phải giới hạn của dãy, mà giới hạn của hàm thì cần chỉ rõ x tiến tới bao nhiêu mới tính được

\(=lim\frac{\left(\frac{1}{3}\right)^n-1}{\left(\frac{2}{3}\right)^n+4}=-\frac{1}{4}\)

AH
Akai Haruma
Giáo viên
10 tháng 4 2020

1.

\(\lim \frac{3n^2+5n+4}{2-n^2}=\lim \frac{\frac{3n^2+5n+4}{n^2}}{\frac{2-n^2}{n^2}}=\lim \frac{3+\frac{5}{n}+\frac{4}{n^2}}{\frac{2}{n^2}-1}=\frac{3}{-1}=-3\)

2.

\(\lim \frac{2n^3-4n^2+3n+7}{n^3-7n+5}=\lim \frac{\frac{2n^3-4n^2+3n+7}{n^3}}{\frac{n^3-7n+5}{n^3}}=\lim \frac{2-\frac{4}{n}+\frac{3}{n^2}+\frac{7}{n^3}}{1-\frac{7}{n^2}+\frac{5}{n^3}}=\frac{2}{1}=2\)

3.

\(\lim (\frac{2n^3}{2n^2+3}+\frac{1-5n^2}{5n+1})=\lim (n-\frac{3n}{2n^2+3}+\frac{1}{5}-n-\frac{1}{5n+1})\)

\(=\frac{1}{5}-\lim (\frac{3n}{2n^2+3}+\frac{1}{5n+1})=\frac{1}{5}-\lim (\frac{3}{2n+\frac{3}{n}}+\frac{1}{5n+1})=\frac{1}{5}-0=\frac{1}{5}\)

4.

\(\lim \frac{1+3^n}{4+3^n}=\lim (1-\frac{3}{4+3^n})=1-\lim \frac{3}{4+3^n}=1-0=1\)

5.

\(\lim \frac{4.3^n+7^{n+1}}{2.5^n+7^n}=\lim \frac{\frac{4.3^n+7^{n+1}}{7^n}}{\frac{2.5^n+7^n}{7^n}}\)

\(=\lim \frac{4.(\frac{3}{7})^n+7}{2.(\frac{5}{7})^n+1}=\frac{7}{1}=7\)

NV
26 tháng 2 2020

Câu 1: đáp án C đúng (đáp án A và B hiển nhiên sai, đáp án D chỉ đúng khi a không âm)

Câu 2: (I) sai, vì với \(x< -1\) hàm ko xác định nên ko liên tục

(II) đúng do tính chất hàm sin

(III) đúng do \(\lim\limits_{x\rightarrow1}\frac{\left|x\right|}{x}=\frac{\left|1\right|}{1}=f\left(1\right)\)

Vậy đáp án D đúng

AH
Akai Haruma
Giáo viên
21 tháng 1 2020

$n$ tiến đến đâu vậy bạn?

AH
Akai Haruma
Giáo viên
21 tháng 1 2020

Câu 2:

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n(n+1)}=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{(n+1)-n}{n(n+1)}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...\frac{1}{n}-\frac{1}{n+1}\)

\(=1-\frac{1}{n+1}\)

\(\Rightarrow \lim_{n\to \infty}(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n(n+1)})=\lim_{n\to \infty}(1-\frac{1}{n+1})=1-\lim_{n\to \infty}\frac{1}{n+1}=1-0=1\)