Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=\(n^6+n^4-2n^2=n^2\left(n^4+n^2-2\right)\)
\(=n^2\left(n^4-n^2+2n^2-2\right)=n^2\left[n^2\left(n^2-1\right)+2\left(n^2-1\right)\right]\)
\(=n^2\left(n^2-1\right)\left(n^2+2\right)\)
- Nếu n = 2k (k thuộc Z) thì \(A=\left(2k\right)^2\left[\left(2k\right)^2-1\right]\left[\left(2k\right)^2+2\right]\)
\(=4k^2\left(4k^2-1\right)\left(4k^2+2\right)=8k^2\left(4k^2-1\right)\left(2k^2+1\right)⋮8\)
- Nếu n = 2k + 1 thì \(A=\left(2k+1\right)^2\left[\left(2k+1\right)^2-1\right]\left[\left(2k+1\right)^2+2\right]\)
\(=\left(4k^2+4k+1\right)\left(4k^2+4k\right)\left(4k^2+4k+3\right)\)
\(=4k\left(k+1\right)\left(4k^2+4k+1\right)\left(4k^2+4k+3\right)\)
=>\(A⋮4.2\left(4k^2+4k+1\right)\left(4k^2+4k+3\right)=8\left(4k^2+4k+1\right)\left(4k^2+4k+3\right)⋮8\) (vì k(k+1) là tích 2 số nguyên liên tiếp)
Từ 2 trường hợp trên thì A chia hết cho 8 với mọi n (1)
- Nếu n chia hết cho 3 thì A chia hết cho 3
- Nếu n không chia hết cho 3
Vì n2 là số chính phương => n2 chia 3 dư 1 (vì n không chia hết cho 3) =>n2 + 2 chia hết cho 3
Ta có: \(A=n^2\left(n^2-1\right)\left(n^2+2\right)=n\left(n-1\right)\left(n+1\right)n\left(n^2+2\right)\)
Mà n(n-1)(n+1) là tích 3 số nguyên liên tiếp =>n(n-1)(n+1) chia hét cho 3
=>\(A⋮3.3.n=9n⋮9\)
Từ 2 trường hợp trên A chia hết cho 9 với mọi n (2)
Mà (8,9) = 1 (3)
Từ (1),(2),(3) => \(A⋮72\left(đpcm\right)\)
\(n^3+n^2+2n^2+2n\)
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(n\left(n+1\right)\left(n+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3. Mà 2 và 3 nguyên tố cùng nhau nên tích chia hết cho 6.
c) \(n^2+14n+49-n^2+10n-25\)
\(=24n+24=24\left(N+1\right)\) CHIA HẾT CHO 24
a) n2(n + 1) + 2n(n + 1)
= (n2 + 2n)(n + 1)
= n(n + 2)(n + 1) chia hết cho 6 vì là 3 số tự nhiên liên tiếp
b) (2n - 1)3 - (2n - 1)
= (2n - 1).[(2n - 1)2 - 1]
= (2n - 1).{ [ (2n - 1) + 1] . [ (2n - 1) -1 ] }
= *2n - 1) . 2n . (2n - 2) chia hết cho 8 vì là 3 số chẵn liên tiếp
c) (n + 2)2 - (n - 2)2
= n2 + 4n - 4 - (n2 - 4n + 4)
= n2 + 4n - 4 - n2 + 4n - 4
= 8n - 8 chia hết cho 8
a)
\(55^{n+1}-55^n\\ =55^n.55-55^n\\ =55^n\left(55-1\right)\\ =55^n.54⋮54\\ \RightarrowĐpcm\)
b)
\(n^2\left(n+1\right)+2n\left(n+1\right)\\ =\left(n+1\right)\left(n^2+2n\right)\\ =n\left(n+1\right)\left(n+2\right)⋮6\\ \)
c)
\(2^{n+2}+2^{n+1}+2^n\\ =2^n.2^2+2^n.2+2^n\\ =2^n\left(4+2+1\right)\\ =2^n.7⋮7\)
\(n\left(2n-3\right)-2n\left(n+1\right)=2n^2-3n-2n^2-2n=-5n\) nên sẽ luôn chia hết cho 5 với mọi n là số nguyên
Chứng minh rằng: \(n^2\left(n+1\right)+2n\left(n+1\right)\) luôn chia hết cho 6 với mọi số nguyên n.
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+2n\right)\)
\(=\left(n+1\right)n\left(n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
vì tích của 3 số tự nhiên liên tiếp chia hết cho 6
Mặt khác n và n+1 và n+2 là 3 số tự nhiên liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\forall n\left(đpcm\right)\)
\(n^6+n^4-2n^2\)
\(=n^2\left(n^4+n^2-2\right)\)
\(=n^2\left[\left(n^4-1\right)+n^2-1\right]\)
\(=n^2\left[\left(n^2-1\right)\left(n^2+1\right)+n^2-1\right]\)
\(=n^2\left(n^2-1\right)\left(n^2+1+1\right)\)
\(=n^2\left(n^2-1\right)\left(n^2+2\right)\)
\(=n\left(n-1\right)\left(n+1\right)n\left(n^2+2\right)\)
Xét \(n=2k\) , ta có :
\(\left(2k\right)^2\left[\left(2k\right)^2-1\right]\left[\left(2k\right)^2+2\right]=4k^2\left(2k-1\right)\left(2k+1\right)\left(4k^2+2\right)\)
\(=8k^2\left(2k-1\right)\left(2k+1\right)\left(2k^2+1\right)⋮8\left(1\right)\)
Xét \(n=2k+1\) , ta có :
\(\left(2k+1\right)^2\left[\left(2k+1\right)^2-1\right]\left[\left(2k+1\right)^2+2\right]=\left(2k+1\right)^2.2k\left(2k+2\right)\left(4k^2+4k+1+2\right)\)
\(=\left(2k+1\right)^2.4k\left(k+1\right)\left(4k^2+4k+3\right)⋮8\left(2\right)\)
( do \(k\left(k+1\right)⋮2\Rightarrow4k\left(k+1\right)⋮8\) )
Với n \(⋮3\Rightarrow n^2⋮9\) \(\Rightarrow n^2\left(n^2-1\right)\left(n^2+2\right)⋮9\left(3\right)\)
Với n \(⋮3̸\) \(\Rightarrow n^2:3\) ( dư 1 ) \(\Rightarrow n^2-1⋮3\Rightarrow n^2+2⋮3\)
Do \(n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n^2\left(n-1\right)\left(n+1\right)\left(n^2+2\right)⋮9\left(4\right)\)
Từ ( 1 ) ; ( 2 ) ; ( 3 ) ; ( 4 )
\(\Rightarrow n^6+n^4-2n^2⋮72\left(đpcm\right)\)