Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b\right)\left(a^3+b^3\right)\le2\left(a^4+b^4\right)\)
\(\Leftrightarrow a^4+a^3b+ab^3+b^4\le2a^4+2b^4\)
\(\Leftrightarrow a^3b-a^4+ab^3-b^4\le0\)
\(\Leftrightarrow a^3\left(b-a\right)+b^3\left(a-b\right)\le0\)
\(\Leftrightarrow\left(a-b\right)\left(b^3-a^3\right)\le0\)
\(\Leftrightarrow-\left(a-b\right)^2\left(a^2+ab+b^2\right)\le0\) (luôn đúng)
Vậy...
a + b a + b ≤ 2 a + b
⇔a + a b + ab + b ≤ 2a + 2b
⇔a b − a + ab − b ≤ 0
⇔a b − a + b a − b ≤ 0
⇔ a − b b − a ≤ 0
⇔− a − b a + ab + b ≤ 0
tự kết luận
Bn tham khảo câu hỏi này nhé :
Câu hỏi của zZz Phan Cả Phát zZz - Toán lớp 8 - Học toán với OnlineMath
\(\left(a+b\right)\left(a^3+b^3\right)\le2\left(a^4+b^4\right)\)
\(\Leftrightarrow a^4+ab^3+a^3b+b^4\le2\left(a^4+b^4\right)\)
\(\Leftrightarrow ab^3+a^3b\le a^4+b^4\)
\(\Leftrightarrow a^4+b^4-ab^3-a^3b\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(luôn đúng)
Dấu "=" xảy ra khi \(a-b=0\Leftrightarrow a=b\)
a ) CM : \(a^4+b^4\ge a^3b+b^3a\)
Giả sử điều cần c/m là đúng
\(\Rightarrow a^4+b^4-a^3b-b^3a\ge0\)
\(\Rightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Rightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)
\(\Rightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
Ta có : \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\a^2+ab+b^2=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\end{matrix}\right.\)
\(\Rightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
\(\Rightarrow a^4+b^4-a^3b-b^3a\ge0\)
\(\Rightarrow a^4+b^4\ge a^3b+b^3a\)
\(\Rightarrow2\left(a^4+b^4\right)\ge a^4+a^3b+b^4+b^3a\)
\(\Rightarrow2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
\(\left(đpcm\right)\)
b ) \(\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
\(=a^4+a^3b+a^3c+b^3a+b^4+b^3c+c^3a+c^3b+c^4\)
\(=\left(a^4+b^4+c^4\right)+\left(a^3b+b^3a\right)+\left(b^3c+c^3b\right)+\left(a^3c+c^3a\right)\)
CMTT như a ) : \(\left\{{}\begin{matrix}a^4+b^4\ge a^3b+b^3a\\b^4+c^4\ge b^3c+c^3b\\a^4+c^4\ge a^3c+c^3a\end{matrix}\right.\)
\(\Rightarrow2\left(a^4+b^4+c^4\right)\ge a^3b+b^3a+b^3c+c^3b+a^3c+c^3a\)
\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge a^4+b^4+c^4+a^3b+b^3a+b^3c+c^3b+a^3c+c^3a\)
\(\Rightarrow3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\left(đpcm\right)\)
BĐT tương đương với :
\(3a^4+3b^4+3c^4-\left(a^4+a^3b+a^3c+b^4+ab^3+b^3c+ac^3+bc^3+c^4\right)\ge0\)
\(\Leftrightarrow\left(a^4+b^4-a^3b-ab^3\right)+\left(b^4+c^4-b^3c-bc^3\right)+\left(a^4+c^4-a^3c-ac^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)+\left(b-c\right)^2\left(b^2+bc+c^2\right)+\left(a-c\right)^2\left(a^2+ac+c^2\right)\ge0\)
BĐT cần chứng minh tương đương với:
\(3a^4+3b^4+3c^4\ge a^4+b^4+c^4+ab^3+bc^3+ca^3+a^3b+b^3c+c^3a\)
\(\Leftrightarrow2a^4+2b^4+2c^4-ab^3-bc^3-ca^3-a^3b-b^3c-c^3a\ge0\)
Theo AM - GM ta dễ có:
\(a^4+a^4+a^4+b^4\ge4\sqrt[4]{a^{12}b^4}=4a^3b\)
\(b^4+b^4+b^4+c^4\ge4\sqrt[4]{b^{12}c^4}=4b^3c\)
\(c^4+c^4+c^4+a^4\ge4\sqrt[4]{c^{12}a^4}=4c^3a\)
Cộng vế theo vế ta có đpcm
(a+b+c)(a3+b3+c3)
=a4+a3b+a3c+ab3+b4+b3c+ac3+bc3+c4
=a4+b4+c4+(a3b+ab3)+(bc3+b3c)+(c3a+ca3)
=a4+b4+c4+ab(a2+b2)+bc(b2+c2)+ca(c2+a2)
=(a4+b4+c4)+ab(a2+b2)+bc(b2+c2)+ca(c2+a2)
P/s đến đây bạn áp đụng bđt thức bunhi a là ra
(a+b+c) (a3+b3+c3)
=a4+a3b+a3c+ab3+b4+b3c+ac3+bc3+c4
=a4+b4+c4+(a3b+ab3)+(bc3+b3c)+(c3a+ca3)
=a4+b4+c4+ab(a2+b2)+bc(b2+c2)+ca(c2+a2)
=(a4+b4+c4)+ab(a2+b2)+bc(b2+c2)+ca(c2+a2)
Lời giải:
Xét hiệu:
\(2(a^4+b^4)-(a+b)(a^3+b^3)=2(a^4+b^4)-(a^4+ab^3+a^3b+b^4)\)
\(=a^4+b^4-a^3b-ab^3=(a^4-a^3b)-(ab^3-b^4)\)
\(=a^3(a-b)-b^3(a-b)=(a^3-b^3)(a-b)=(a-b)(a^2+ab+b^2)(a-b)\)
\(=(a-b)^2(a^2+ab+b^2)\)
Vì : \((a-b)^2\geq 0, \forall a,b\in\mathbb{R}\)
\(a^2+ab+b^2=(a+\frac{b}{2})^2+\frac{3}{4}b^2\geq 0, \forall a,b\in\mathbb{R}\)
\(\Rightarrow 2(a^4+b^4)-(a+b)(a^3+b^3)=(a-b)^2(a^2+ab+b^2)\geq 0\)
\(\Rightarrow 2(a^4+b^4)\geq (a+b)(a^3+b^3)\)
Ta có đpcm.
1. BĐT tương đương với \(6\left(a^2+b^2\right)-2ab+8-4\left(a\sqrt{b^2+1}+b\sqrt{a^2+1}\right)\ge0\)
\(\Leftrightarrow\left[a^2-4a\sqrt{b^2+1}+4\left(b^2+1\right)\right]+\left[b^2-4b\sqrt{a^2+1}+4\left(a^2+1\right)\right]\)\(+\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a-2\sqrt{b^2+1}\right)^2+\left(b-2\sqrt{a^2+1}\right)^2+\left(a-b\right)^2\ge0\)(đúng)
=> Đẳng thức không xảy ra
2. \(a^4+b^4+c^2+1\ge2a\left(ab^2-a+c+1\right)\)
\(\Leftrightarrow a^4+b^4+c^2+1\ge2a^2b^2-2a^2+2ac+2a\)
\(\Leftrightarrow\left(a^4-2a^2b^2+b^4\right)+\left(c^2-2ac+a^2\right)+\left(a^2-2a+1\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(c-a\right)^2+\left(a-1\right)^2\ge0\)
Khá dễ!
Ta có: \(\left(a+b\right)\left(a^3+b^3\right)\le2\left(a^4+b^4\right)\)
<=> \(a^4+a^3b+ab^3+b^4\le a^4+b^4+a^4+b^4\)
<=> \(a^3b+ab^3\le a^4+b^4\)
<=> \(a^4-a^3b+b^4-ab^3\ge0\)
<=> \(a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
<=> \(\left(a-b\right)\left(a^3-b^3\right)\ge0\)
<=> \(\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (Luôn đúng)
=> đpcm
hjhj, cái này lớp 8 đó!
Ta có: \(a^2+ab+b^2=\left(a^2+ab+\dfrac{1}{4}b^2\right)+\dfrac{3}{4}b^2\)
\(=\left(a+\dfrac{1}{2}b\right)^2+\dfrac{3}{4}b^2\ge0\) với mọi a,b \(\in\) R @Trần Thiên Kim