K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2019

Ta có :

\(\left(a-\frac{1}{b}\right)\left(b-\frac{1}{c}\right)\left(c-\frac{1}{a}\right)\ge\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)\left(c-\frac{1}{c}\right)\)

\(\Leftrightarrow\frac{\left(ab-1\right)\left(bc-1\right)\left(ac-1\right)}{abc}\ge\frac{\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)}{abc}\)

\(\Leftrightarrow\left(ab-1\right)\left(bc-1\right)\left(ac-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\)

\(\Leftrightarrow\left(ab-bc\right)^2+\left(bc-ac\right)^2+\left(ac-ab\right)^2\ge\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

\(\Leftrightarrow\left(a-c\right)^2\left(b^2-1\right)+\left(b-c\right)^2\left(a^2-1\right)+\left(a-b\right)^2\left(c^2-1\right)\ge0\left(1\right)\)

Do a,b,c là các số thực dương không nhỏ hơn 1 nên (1) đúng .

Dấu đẳng thức xảy ra khi và khỉ khi : \(\hept{\begin{cases}\left(a-c\right)^2\left(b^2-1\right)=0\\\left(b-c\right)^2\left(a^2-1\right)=0\\\left(a-b\right)^2\left(c^2-1\right)=0\end{cases}\Rightarrow a=b=c}\)

28 tháng 10 2019

Dấu "=" còn xảy ra ở các TH: 

a = b = 1, c bất kì .

a = c =1, b bất kì

b = c = 1,  a bất kì

( a, b, c ko nhỏ hơn 1 )

5 tháng 3 2021

Xét ~~~~\(\left(a-\frac{1}{b}\right)\left(b-\frac{1}{c}\right)\left(c-\frac{1}{a}\right)\ge\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)\left(c-\frac{1}{c}\right)\)\(\Leftrightarrow\frac{\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)}{abc}\ge\frac{\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)}{abc}\)\(\Leftrightarrow\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\)(Do a,b,c không nhỏ hơn 1 nên abc > 0)\(\Leftrightarrow a^2b^2c^2-\left(abc^2+ab^2c+a^2bc\right)+\left(ab+bc+ca\right)-1\ge a^2b^2c^2-\left(a^2b^2+b^2c^2+c^2a^2\right)+\left(a^2+b^2+c^2\right)-1\)\(\Leftrightarrow-\left(abc^2+ab^2c+a^2bc\right)+\left(ab+bc+ca\right)\ge-\left(a^2b^2+b^2c^2+c^2a^2\right)+\left(a^2+b^2+c^2\right)\)\(\Leftrightarrow2\left(a^2b^2+b^2c^2+c^2a^2\right)-2\left(abc^2+ab^2c+a^2bc\right)\ge2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\)\(\Leftrightarrow\left(bc-ca\right)^2+\left(ab-bc\right)^2+\left(ca-ab\right)^2\ge\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)\(\Leftrightarrow c^2\left(a-b\right)^2+b^2\left(a-c\right)^2+a^2\left(b-c\right)^2\ge\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)\(\Leftrightarrow\left(c^2-1\right)\left(a-b\right)^2+\left(b^2-1\right)\left(a-c\right)^2+\left(a^2-1\right)\left(b-c\right)^2\ge0\)(Đúng do a,b,c không nhỏ hơn 1)

Đẳng thức xảy ra khi a = b = c hoặc (a,b,c) = (1,1,k) (k bất kì) và các hoán vị

4 tháng 5 2018

a + b5 + c

= ( a+b+c )

= 0 chia het cho 30

4 tháng 5 2018

Ta có :\(\left(a-\frac{1}{b}\right)\left(b-\frac{1}{c}\right)\left(c-\frac{1}{a}\right)\)

\(=\frac{ab-1}{b}.\frac{bc-1}{c}.\frac{ac-1}{a}\)

Ta lại có : \(\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)\left(c-\frac{1}{c}\right)\)

\(=\frac{a^2-1}{a}.\frac{b^2-1}{b}.\frac{c^2-1}{c}\)

1 tháng 12 2019

Giả sử:

\(a>b>c\Rightarrow a-b>0,b-c>0,a-c>0\)

Ta có:

\(\hept{\begin{cases}a^2+b^2+c^2\ge a^2+c^2\\\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}\ge\frac{\left(\frac{1}{a-b}+\frac{1}{b-c}\right)^2}{2}\ge\frac{8}{\left(a-c\right)^2}\end{cases}}\)

Từ đây ta có:

\(VT\ge\left(a^2+c^2\right).\frac{9}{\left(c-a\right)^2}\)

Ta chứng minh

\(\left(a^2+c^2\right).\frac{9}{\left(c-a\right)^2}\ge\frac{9}{2}\)

\(\Leftrightarrow\left(a+c\right)^2\ge0\)(Đúng)

Vậy ta có điều phải chứng minh là đúng. Dấu = xảy ra khi a = - c; b = 0 và các hoán vị của nó

28 tháng 1 2020

Ta có: \(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2\)

\(=\left(a^2+b^2+c^2\right)+\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+6\)

\(\ge\frac{1}{3}\left(a+b+c\right)^2+\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+6\)

\(\ge\frac{1}{3}\left(a+b+c\right)^2+\frac{1}{3}\left(\frac{9}{a+b+c}\right)^2+6\)

\(=\frac{100}{3}\left(đpcm\right)\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)