Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2015^{2017}+2017^{2015}=\left(2015^{2017}+1\right)+\left(2017^{2015}-1\right)=A\left(2015+1\right)+B\left(2017-1\right)=2016A+2016B=2016\left(A+B\right)\)Luôn chia hết cho 2016
Vậy ta có điều phải chứng minh.
\(\left|x-2015\right|^{2016}+\left|x-2016\right|^{2017}=1\)
Có: \(\left|x-2015\right|^{2016}\ge0;\left|x-2016\right|^{2017}\ge0\)
TH1: \(\hept{\begin{cases}\left|x-2015\right|^{2016}=1\\\left|x-2016\right|^{2017}=0\end{cases}}\Rightarrow\hept{\begin{cases}\left|x-2015\right|=1\\\left|x-2016\right|=0\end{cases}}\)
THa: \(x-2015=-1\Rightarrow x=2014\)
Thay vào: \(2014-2016\ne0\) ( loại)
THb: \(x-2015=1\Rightarrow x=2016\)
Thay vào: \(2016-2016=0\)( chọn )
TH2: \(\hept{\begin{cases}\left|x-2015\right|^{2016}=0\\\left|x-2016\right|^{2017}=1\end{cases}}\Rightarrow\hept{\begin{cases}\left|x-2015\right|=0\\\left|x-2016\right|=1\end{cases}}\)
THc: \(x-2016=-1\Rightarrow x=2015\)
Thay vào: \(2015-2015=0\)( chọn )
THd: \(x-2016=1\Rightarrow x=2017\)
Thay vào: \(2017-2015\ne0\)
Vậy: x = 2016 hoặc x = 2015
nếu x<2017 thì x-2017<2017
vì tổng của các giá trị tuyệt đối không thể là số âm nên x<2017 loại.
xét \(x\ge2017\), ta có:\(\left|x-2014\right|=x-2014\\ \left|2x-2015\right|=2x-2015\\\left|3x-2016\right|=3x-2016\)
khi đó:
\(x-2014+2x-2015+3x-2016=x-2017\\ \Leftrightarrow6x=4028\\ \Leftrightarrow x=\dfrac{2014}{3}\left(loại\right)\)
vậy phương trình đã cho vô nghiệm.
\(\left|x-2014\right|+\left|2x-2015\right|+\left|3x-2016\right|=x-2017\)
Do \(\left|x-2014\right|+\left|2x-2015\right|+\left|3x-2016\right|\ge0\forall x\)
\(\Rightarrow x-2017\ge0\\ \Leftrightarrow x\ge2017\)
\(\Rightarrow\left\{{}\begin{matrix}x-2014\ge3>0\\2x-2015\ge2019>0\\3x-2016\ge4035>0\end{matrix}\right.\)
\(pt\Leftrightarrow\left|x-2014\right|+\left|2x-2015\right|+\left|3x-2016\right|=x-2017\\ \Leftrightarrow x-2014+2x-2015+3x-2016=x-2017\\ \Leftrightarrow6x-6045=x-2017\\ \Leftrightarrow6x-x=-2017+6045\\ \Leftrightarrow5x=4028\\ \Leftrightarrow x=\dfrac{4028}{5}\\ \)
Vậy pt có nghiệm \(x=\dfrac{4028}{5}\)
\(\frac{x+5}{2015}+\frac{x+4}{2016}+\frac{x+3}{2017}=\frac{x+2015}{5}+\frac{x+2016}{4}+\frac{x+2017}{3}\)
\(\Leftrightarrow\frac{x+5}{2015}+\frac{x+4}{2016}+\frac{x+3}{2017}-\frac{x+2015}{5}-\frac{x+2016}{4}-\frac{x+2017}{3}=0\)
\(\Leftrightarrow\left(\frac{x+5}{2015}+1\right)+\left(\frac{x+4}{2016}+1\right)+\left(\frac{x+3}{2017}+1\right)-\left(\frac{x+2015}{5}+1\right)-\left(\frac{x+2016}{4}+1\right)\)
\(-\left(\frac{x+2017}{3}+1\right)=0\)
\(\Leftrightarrow\frac{x+2020}{2015}+\frac{x+2020}{2016}+\frac{x+2020}{2017}-\frac{x+2020}{5}-\frac{x+2020}{4}-\frac{x+2020}{3}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
\(\Leftrightarrow x+2020=0\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\ne0\right)\)
<=> x=-2020
Vậy x=-2020
Chưa ai giải thì thui
MK cũng bó tay
Chúc bn hok t
:) hihi
Ta có:
20152017 + 20172015
= 20152017 + 1 + 20172015 - 1
= (20152017 + 12017) + (20172015 - 12015)
Do 20152017 + 12017 luôn chia hết cho 2015 + 1 = 2016; 20172015 - 12015 luôn chia hết cho 2017 - 1 = 2016
=> (20152017 + 12017) + (20172015 - 12015) chia hết cho 2016
=> 20152017 + 20172015 chia hết cho 2016 (đpcm)
Lời giải:
Ta có:
\(A=2015^{2017}+2017^{2015}=2015^{2017}+1+2017^{2015}-1\)
Theo khai triển hằng đẳng thức:
\(2015^{2017}+1=2015^{2017}+1^{2017}=(2015+1)(2015^{2016}-2015^{2015}+....-2015+1)\vdots (2015+1)\)
\(\Leftrightarrow 2015^{2017}+1\vdots 2016\) (1)
Và: \(2017^{2015}-1=2017^{2015}-1^{2015}=(2017-1)(2017^{2014}+2017^{2013}+...+2017+1)\vdots (2017-1)\)
\(\Leftrightarrow 2017^{2015}-1\vdots 2016\) (2)
Từ (1),(2) suy ra \(A=2015^{2017}+2017^{2015}\vdots 2016\) (đpcm)
Nếu đúng tick em nha
2015^2017+2017^2015
=2015^2017+2017^2015-1
=(2015^2017+1^2017)+(2017^2015-1^2015)
Do 2015^2017+1^2017\(⋮\)2015+2=2016
2017^2015-1^2015\(⋮\)2017-1=2016
Vậy (2015^2017+2017^2015)\(⋮\)2016
Tick nha !