Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với \(n=0\) ta thấy nó thỏa mãn điều kiện bài toán
giả sử \(n=k\) thì ta có : \(5^{n+2}+26.5^n+8^{2n+1}=5^{k+2}+26.5^k+8^{2k+1}⋮59\)
khi đó nếu \(n=k+1\) thì ta có :
\(5^{n+2}+26.5^n+8^{2n+1}=5^{k+1+2}+26.5^{k+1}+8^{2k+2+1}\)\(=5.5^{k+2}+5.26.5^k+8^2.8^{2k+1}=5.5^{k+2}+5.26.5^k+5.8^{2k+1}+59.8^{2k+1}\)
\(=5\left(5^{k+2}+26.5^k+8^{2k+1}\right)+59.8^{2k+1}⋮59\)
\(\Rightarrow\left(đpcm\right)\)
Bài đầu đơn giản rồi , tự tính nhé <3
Bài 2
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.3^2-2^n.2^2+3^n-2^n\)
\(=\left(3^n.3^2+1\right)-\left(2^n.2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)⋮10\)
Vậy.....
Ta có :\(n^3-13n\)
\(=\left(n^3-n\right)-12n\)
\(=n\left(n^2-1\right)-6\left(2n\right)\)
\(=\left(n-1\right)n\left(n+1\right)-6\left(2n\right)\)
Vì (n-1);n;n+1 là ba số tự nhiên liên tiếp =>(n-1)n(n+1)\(⋮\)2 và 3;
=>(n-1)n(n+1)\(⋮\)6
Mà 6(2n)\(⋮\)6
=>(n-1)n(n+1)-6(2n)\(⋮6\)
\(\Rightarrow n^3-13n⋮6\)
bài này có lấn sang 7 hàng đẳng thức lớp 8 :))
\(m.n.\left(m^2-1-n^2+1\right)\)
\(=m.n.\left[\left(m-1\right).\left(m+1\right)-\left(n-1\right).\left(n+1\right)\right]\)
\(=m.n.\left(m-1\right).\left(m+1\right)-m.n.\left(n-1\right).\left(n+1\right)\)
vì m,m-1,m+1 và n,n-1,n+1 là tích của 3 số liên tiếp => \(m.n.\left(m-1\right).\left(m+1\right)⋮3,m.n.\left(n-1\right).\left(n+1\right)⋮3\)
=> \(m.n.\left(m-1\right).\left(m+1\right)-m.n.\left(n-1\right).\left(n+1\right)⋮3\)
hay \(m.n.\left(m^2-n^2\right)⋮3\left(đpcm\right)\)
\(Q=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(Q=1-\frac{1}{n+1}=\frac{n}{n+1}\)
gọi d là UCLN của n,(n+1) ta có:
\(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}\Rightarrow n+1-n⋮d\Rightarrow d=1}\)
=> Q là p/s tối giãn mà n khác 0 => Q ko thuộc Z
Gọi số cần tìm là n
Theo đề bài ta có:
Với a,b nguyên dương
Mà do là số có 3 chữ số nên ta có:
Do là số lớn nhất có 3 chữ số nên ta thử giá trị b từ 31 giảm dần nhận giá trị nào đầu tiên thì ta được b=29 thoả mãn
Vậy
Xét n trong các trường hợp sau:
+) n = 4k (k \(\in\) N) => VT = \(\left[\frac{4k+3}{4}\right]+\left[\frac{4k+5}{4}\right]+\left[\frac{4k}{2}\right]=\left[k+0,75\right]+\left[k+1,25\right]+\left[2k\right]\)
\(=k+\left(k+1\right)+2k=4k+1=n+1\)= VP
+) n = 4k + 1 (k \(\in\) N) => VT = \(\left[\frac{4k+4}{4}\right]+\left[\frac{4k+6}{4}\right]+\left[\frac{4k+1}{2}\right]=\left[k+1\right]+\left[k+1,5\right]+\left[2k+0,5\right]\)
\(=\left(k+1\right)+\left(k+1\right)+2k=4k+2=n+1\)= VP
+) n = 4k + 2 (k \(\in\) N) => VT= \(\left[\frac{4k+5}{4}\right]+\left[\frac{4k+7}{4}\right]+\left[\frac{4k+2}{2}\right]=\left[k+1,25\right]+\left[k+1,75\right]+\left[2k+1\right]\)
\(=\left(k+1\right)+\left(k+1\right)+\left(2k+1\right)=4k+3=n+1\)= VP
+) n = 4k + 3 (k \(\in\) N) => VT = \(\left[\frac{4k+6}{4}\right]+\left[\frac{4k+8}{4}\right]+\left[\frac{4k+3}{2}\right]=\left[k+1,5\right]+\left[k+2\right]+\left[2k+1,5\right]\)
\(=\left(k+1\right)+\left(k+2\right)+\left(2k+1\right)=4k+4=n+1\)= VP
Từ các trường hợp trên => đpcm
\(\frac{n+3}{4}+\frac{n+5}{4}+\frac{n}{2}=\frac{n+3}{4}+\frac{n+5}{4}+\frac{2n}{4}=\frac{n+3+n+5+2n}{4}=\frac{4n+8}{4}=n+2\)